浮游植物-光反馈如何影响海洋N2O存量?

S. Berthet, J. Jouanno, R. Séférian, M. Gehlen, W. Llovel
{"title":"浮游植物-光反馈如何影响海洋N2O存量?","authors":"S. Berthet, J. Jouanno, R. Séférian, M. Gehlen, W. Llovel","doi":"10.5194/esd-14-399-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The phytoplankton–light feedback (PLF) describes the interaction between\nphytoplankton biomass and the downwelling shortwave radiation entering the\nocean. The PLF allows the simulation of differential heating across the ocean\nwater column as a function of phytoplankton concentration. Only one third of\nthe Earth system models contributing to the 6th phase of the Coupled\nModel Intercomparison Project (CMIP6) include a complete representation of\nthe PLF. In other models, the PLF is either approximated by a prescribed\nclimatology of chlorophyll or not represented at all. Consequences of an\nincomplete representation of the PLF on the modelled biogeochemical state\nhave not yet been fully assessed and remain a source of multi-model\nuncertainty in future projection. Here, we evaluate within a coherent\nmodelling framework how representations of the PLF of varying complexity\nimpact ocean physics and ultimately marine production of nitrous oxide\n(N2O), a major greenhouse gas. We exploit global sensitivity\nsimulations at 1∘ horizontal resolution over the last 2 decades\n(1999–2018), coupling ocean, sea ice and marine biogeochemistry. The\nrepresentation of the PLF impacts ocean heat uptake and temperature of the\nfirst 300 m of the tropical ocean. Temperature anomalies due to an\nincomplete PLF representation drive perturbations of ocean stratification,\ndynamics and oxygen concentration. These perturbations translate into\ndifferent projection pathways for N2O production depending on the\nchoice of the PLF representation. The oxygen concentration in the North\nPacific oxygen-minimum zone is overestimated in model runs with an\nincomplete representation of the PLF, which results in an underestimation of\nlocal N2O production. This leads to important regional differences of\nsea-to-air N2O fluxes: fluxes are enhanced by up to 24 % in the South\nPacific and South Atlantic subtropical gyres but reduced by up to 12 % in\noxygen-minimum zones of the Northern Hemisphere. Our results, based on a\nglobal ocean–biogeochemical model at CMIP6 state-of-the-art level, shed light on\ncurrent uncertainties in modelled marine nitrous oxide budgets in climate\nmodels.\n","PeriodicalId":92775,"journal":{"name":"Earth system dynamics : ESD","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How does the phytoplankton–light feedback affect the marine N2O inventory?\",\"authors\":\"S. Berthet, J. Jouanno, R. Séférian, M. Gehlen, W. Llovel\",\"doi\":\"10.5194/esd-14-399-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The phytoplankton–light feedback (PLF) describes the interaction between\\nphytoplankton biomass and the downwelling shortwave radiation entering the\\nocean. The PLF allows the simulation of differential heating across the ocean\\nwater column as a function of phytoplankton concentration. Only one third of\\nthe Earth system models contributing to the 6th phase of the Coupled\\nModel Intercomparison Project (CMIP6) include a complete representation of\\nthe PLF. In other models, the PLF is either approximated by a prescribed\\nclimatology of chlorophyll or not represented at all. Consequences of an\\nincomplete representation of the PLF on the modelled biogeochemical state\\nhave not yet been fully assessed and remain a source of multi-model\\nuncertainty in future projection. Here, we evaluate within a coherent\\nmodelling framework how representations of the PLF of varying complexity\\nimpact ocean physics and ultimately marine production of nitrous oxide\\n(N2O), a major greenhouse gas. We exploit global sensitivity\\nsimulations at 1∘ horizontal resolution over the last 2 decades\\n(1999–2018), coupling ocean, sea ice and marine biogeochemistry. The\\nrepresentation of the PLF impacts ocean heat uptake and temperature of the\\nfirst 300 m of the tropical ocean. Temperature anomalies due to an\\nincomplete PLF representation drive perturbations of ocean stratification,\\ndynamics and oxygen concentration. These perturbations translate into\\ndifferent projection pathways for N2O production depending on the\\nchoice of the PLF representation. The oxygen concentration in the North\\nPacific oxygen-minimum zone is overestimated in model runs with an\\nincomplete representation of the PLF, which results in an underestimation of\\nlocal N2O production. This leads to important regional differences of\\nsea-to-air N2O fluxes: fluxes are enhanced by up to 24 % in the South\\nPacific and South Atlantic subtropical gyres but reduced by up to 12 % in\\noxygen-minimum zones of the Northern Hemisphere. Our results, based on a\\nglobal ocean–biogeochemical model at CMIP6 state-of-the-art level, shed light on\\ncurrent uncertainties in modelled marine nitrous oxide budgets in climate\\nmodels.\\n\",\"PeriodicalId\":92775,\"journal\":{\"name\":\"Earth system dynamics : ESD\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth system dynamics : ESD\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/esd-14-399-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth system dynamics : ESD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-14-399-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要浮游植物-光反馈(PLF)描述了浮游植物生物量和进入海洋的下行短波辐射之间的相互作用。PLF允许模拟作为浮游植物浓度函数的跨海水柱的差异加热。在参与耦合模型相互比较项目(CMIP6)第六阶段的地球系统模型中,只有三分之一包含PLF的完整表示。在其他模型中,PLF要么用规定的叶绿素气候学来近似,要么根本没有表示。PLF在模拟生物地球化学状态上的完整表示的后果尚未得到充分评估,并且在未来的预测中仍然是多模型不确定性的来源。在这里,我们在一个连贯的建模框架内评估了不同复杂度的PLF的表示如何影响海洋物理,并最终影响一氧化二氮(N2O)的海洋生产,这是一种主要的温室气体。我们利用了过去20年(1999-2008)中1∘水平分辨率的全球敏感性模拟,将海洋、海冰和海洋生物地球化学耦合起来。PLF的出现影响了前300年的海洋热量吸收和温度 m代表热带海洋。由于完整的PLF表示引起的温度异常驱动了海洋分层、动力学和氧气浓度的扰动。根据PLF表示的选择,这些扰动转化为N2O产生的不同投影路径。在完全表示PLF的模型运行中,北太平洋氧气最低区的氧气浓度被高估,这导致低估了当地N2O产量。这导致了沙对空气N2O通量的重要区域差异:通量增加了24 % 在南太平洋和南大西洋的副热带环流中,但减少了12个 % 北半球的缺氧最少区。我们的研究结果基于CMIP6最先进水平的全球海洋-生物地球化学模型,揭示了气候模型中模拟海洋一氧化二氮预算的当前不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How does the phytoplankton–light feedback affect the marine N2O inventory?
Abstract. The phytoplankton–light feedback (PLF) describes the interaction between phytoplankton biomass and the downwelling shortwave radiation entering the ocean. The PLF allows the simulation of differential heating across the ocean water column as a function of phytoplankton concentration. Only one third of the Earth system models contributing to the 6th phase of the Coupled Model Intercomparison Project (CMIP6) include a complete representation of the PLF. In other models, the PLF is either approximated by a prescribed climatology of chlorophyll or not represented at all. Consequences of an incomplete representation of the PLF on the modelled biogeochemical state have not yet been fully assessed and remain a source of multi-model uncertainty in future projection. Here, we evaluate within a coherent modelling framework how representations of the PLF of varying complexity impact ocean physics and ultimately marine production of nitrous oxide (N2O), a major greenhouse gas. We exploit global sensitivity simulations at 1∘ horizontal resolution over the last 2 decades (1999–2018), coupling ocean, sea ice and marine biogeochemistry. The representation of the PLF impacts ocean heat uptake and temperature of the first 300 m of the tropical ocean. Temperature anomalies due to an incomplete PLF representation drive perturbations of ocean stratification, dynamics and oxygen concentration. These perturbations translate into different projection pathways for N2O production depending on the choice of the PLF representation. The oxygen concentration in the North Pacific oxygen-minimum zone is overestimated in model runs with an incomplete representation of the PLF, which results in an underestimation of local N2O production. This leads to important regional differences of sea-to-air N2O fluxes: fluxes are enhanced by up to 24 % in the South Pacific and South Atlantic subtropical gyres but reduced by up to 12 % in oxygen-minimum zones of the Northern Hemisphere. Our results, based on a global ocean–biogeochemical model at CMIP6 state-of-the-art level, shed light on current uncertainties in modelled marine nitrous oxide budgets in climate models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信