Vanessa Ochi Agostini, Letícia Terres Rodrigues, A. Macêdo, E. Muxagata
{"title":"海洋浮游生物与生物膜样品中原核生物计数技术的比较","authors":"Vanessa Ochi Agostini, Letícia Terres Rodrigues, A. Macêdo, E. Muxagata","doi":"10.3989/scimar.05117.019","DOIUrl":null,"url":null,"abstract":"Though a large number of techniques are available for the study of aquatic bacteria, the aim of this study was to establish a technique for analysing free-living and biofilm prokaryotic cells through laboratory assays. In particular, we wished to analyse the efficiency of ultrasound to detach and disrupt biofilm, to obtain an efficient stain treatment for quantifying free-living and biofilm prokaryotes in flow cytometry (FC), and to compare epifluorescence microscopy (EFM), scanning electron microscopy (SEM) and FC for quantifying free-living and biofilm prokaryotes#. Marine-grade plywood substrates were immersed in natural marine water that was conditioned for 12 days. At 6 and 12 days, water aliquots and substrates were removed to estimate free-living and biofilm prokaryote density. Ultrasound efficiently removed marine biofilm from substrates (up to 94%) without cell damage. FC analysis (unstained) reliably quantified marine plankton and young or mature biofilm prokaryotes compared with other staining (acridine orange, 4′,6-diamidino-2-phenylindole, propidium iodide and green fluorescent nucleic acid), EFM or SEM techniques. FC and SEM achieved similar results, while a high variability was observed in the EFM technique. FC was faster and more precise than SEM because the count is not dependent on the observer.","PeriodicalId":21600,"journal":{"name":"Scientia Marina","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of techniques for counting prokaryotes in marine planktonic and biofilm samples\",\"authors\":\"Vanessa Ochi Agostini, Letícia Terres Rodrigues, A. Macêdo, E. Muxagata\",\"doi\":\"10.3989/scimar.05117.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though a large number of techniques are available for the study of aquatic bacteria, the aim of this study was to establish a technique for analysing free-living and biofilm prokaryotic cells through laboratory assays. In particular, we wished to analyse the efficiency of ultrasound to detach and disrupt biofilm, to obtain an efficient stain treatment for quantifying free-living and biofilm prokaryotes in flow cytometry (FC), and to compare epifluorescence microscopy (EFM), scanning electron microscopy (SEM) and FC for quantifying free-living and biofilm prokaryotes#. Marine-grade plywood substrates were immersed in natural marine water that was conditioned for 12 days. At 6 and 12 days, water aliquots and substrates were removed to estimate free-living and biofilm prokaryote density. Ultrasound efficiently removed marine biofilm from substrates (up to 94%) without cell damage. FC analysis (unstained) reliably quantified marine plankton and young or mature biofilm prokaryotes compared with other staining (acridine orange, 4′,6-diamidino-2-phenylindole, propidium iodide and green fluorescent nucleic acid), EFM or SEM techniques. FC and SEM achieved similar results, while a high variability was observed in the EFM technique. FC was faster and more precise than SEM because the count is not dependent on the observer.\",\"PeriodicalId\":21600,\"journal\":{\"name\":\"Scientia Marina\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Marina\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3989/scimar.05117.019\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Marina","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3989/scimar.05117.019","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Comparison of techniques for counting prokaryotes in marine planktonic and biofilm samples
Though a large number of techniques are available for the study of aquatic bacteria, the aim of this study was to establish a technique for analysing free-living and biofilm prokaryotic cells through laboratory assays. In particular, we wished to analyse the efficiency of ultrasound to detach and disrupt biofilm, to obtain an efficient stain treatment for quantifying free-living and biofilm prokaryotes in flow cytometry (FC), and to compare epifluorescence microscopy (EFM), scanning electron microscopy (SEM) and FC for quantifying free-living and biofilm prokaryotes#. Marine-grade plywood substrates were immersed in natural marine water that was conditioned for 12 days. At 6 and 12 days, water aliquots and substrates were removed to estimate free-living and biofilm prokaryote density. Ultrasound efficiently removed marine biofilm from substrates (up to 94%) without cell damage. FC analysis (unstained) reliably quantified marine plankton and young or mature biofilm prokaryotes compared with other staining (acridine orange, 4′,6-diamidino-2-phenylindole, propidium iodide and green fluorescent nucleic acid), EFM or SEM techniques. FC and SEM achieved similar results, while a high variability was observed in the EFM technique. FC was faster and more precise than SEM because the count is not dependent on the observer.
期刊介绍:
Scientia Marina is the successor to Investigación Pesquera, a journal of marine sciences published since 1955 by the Institut de Ciències del Mar de Barcelona (CSIC). Scientia Marina is included in the Science Citation Index since 1998 and publishes original papers, reviews and comments concerning research in the following fields: Marine Biology and Ecology, Fisheries and Fisheries Ecology, Systematics, Faunistics and Marine Biogeography, Physical Oceanography, Chemical Oceanography, and Marine Geology. Emphasis is placed on articles of an interdisciplinary nature and of general interest.