加权指数分布族:性质、应用和特征

IF 0.1 Q4 STATISTICS & PROBABILITY
Zubair Ahmad, G. Hamedani, M. Elgarhy
{"title":"加权指数分布族:性质、应用和特征","authors":"Zubair Ahmad, G. Hamedani, M. Elgarhy","doi":"10.29252/jirss.19.1.209","DOIUrl":null,"url":null,"abstract":"In this paper a new method of introducing an additional parameter to a continuous distribution is proposed, which leads to a new class of distributions, called the weighted exponentiated family. A special sub-model is discussed. General expressions for some of the mathematical properties of this class such as the moments, quantile function, generating function and order statistics are derived; and certain characterizations are also discussed. To estimate the model parameters, the method of maximum likelihood is applied. A simulation study is carried out to assess the finite sample behavior of the maximum likelihood estimators. Finally, the usefulness of the proposed method via two applications to real data sets is illustrated.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":"19 1","pages":"209-228"},"PeriodicalIF":0.1000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Weighted Exponentiated Family of Distributions: Properties, Applications and Characterizations\",\"authors\":\"Zubair Ahmad, G. Hamedani, M. Elgarhy\",\"doi\":\"10.29252/jirss.19.1.209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new method of introducing an additional parameter to a continuous distribution is proposed, which leads to a new class of distributions, called the weighted exponentiated family. A special sub-model is discussed. General expressions for some of the mathematical properties of this class such as the moments, quantile function, generating function and order statistics are derived; and certain characterizations are also discussed. To estimate the model parameters, the method of maximum likelihood is applied. A simulation study is carried out to assess the finite sample behavior of the maximum likelihood estimators. Finally, the usefulness of the proposed method via two applications to real data sets is illustrated.\",\"PeriodicalId\":42965,\"journal\":{\"name\":\"JIRSS-Journal of the Iranian Statistical Society\",\"volume\":\"19 1\",\"pages\":\"209-228\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIRSS-Journal of the Iranian Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/jirss.19.1.209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/jirss.19.1.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种在连续分布中引入附加参数的新方法,这导致了一类新的分布,称为加权指数族。讨论了一个特殊的子模型。导出了这类数学性质的一般表达式,如矩、分位数函数、生成函数和阶统计量;并讨论了某些性质。为了估计模型参数,采用了最大似然法。进行了模拟研究,以评估最大似然估计量的有限样本行为。最后,通过对真实数据集的两个应用,说明了所提出的方法的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Weighted Exponentiated Family of Distributions: Properties, Applications and Characterizations
In this paper a new method of introducing an additional parameter to a continuous distribution is proposed, which leads to a new class of distributions, called the weighted exponentiated family. A special sub-model is discussed. General expressions for some of the mathematical properties of this class such as the moments, quantile function, generating function and order statistics are derived; and certain characterizations are also discussed. To estimate the model parameters, the method of maximum likelihood is applied. A simulation study is carried out to assess the finite sample behavior of the maximum likelihood estimators. Finally, the usefulness of the proposed method via two applications to real data sets is illustrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信