基于样条函数的多项式时间趋势AR(1)模型的贝叶斯估计

Q3 Business, Management and Accounting
V. Agiwal, J. Jeevan Kumar, Narinder Kumar
{"title":"基于样条函数的多项式时间趋势AR(1)模型的贝叶斯估计","authors":"V. Agiwal, J. Jeevan Kumar, Narinder Kumar","doi":"10.1080/01966324.2021.1903368","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we develop an estimation procedure for an autoregressive model with polynomial time trend approximated by a spline function. Spline function has the advantage of approximating the non-linear time series in an appropriate degree of polynomial time trend model. For Bayesian parameter estimation, the conditional posterior distribution is obtained under two symmetric loss functions. Due to the complex form of the conditional posterior distribution, Markov Chain Monte Carlo (MCMC) approach is used to estimate the Bayes estimators. The performance of Bayes estimators is compared with that of the corresponding maximum likelihood estimators (MLEs) in terms of mean squared error (MSE) and average absolute bias (AB) via a simulation study. To illustrate the proposed study, import series of Brazil, Russia, India, China, and South Africa (BRICS) countries are analyzed.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"13 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1903368","citationCount":"0","resultStr":"{\"title\":\"Bayesian Estimation of the Polynomial Time Trend AR(1) Model through Spline Function\",\"authors\":\"V. Agiwal, J. Jeevan Kumar, Narinder Kumar\",\"doi\":\"10.1080/01966324.2021.1903368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we develop an estimation procedure for an autoregressive model with polynomial time trend approximated by a spline function. Spline function has the advantage of approximating the non-linear time series in an appropriate degree of polynomial time trend model. For Bayesian parameter estimation, the conditional posterior distribution is obtained under two symmetric loss functions. Due to the complex form of the conditional posterior distribution, Markov Chain Monte Carlo (MCMC) approach is used to estimate the Bayes estimators. The performance of Bayes estimators is compared with that of the corresponding maximum likelihood estimators (MLEs) in terms of mean squared error (MSE) and average absolute bias (AB) via a simulation study. To illustrate the proposed study, import series of Brazil, Russia, India, China, and South Africa (BRICS) countries are analyzed.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"41 1\",\"pages\":\"13 - 23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2021.1903368\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2021.1903368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1903368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文给出了用样条函数逼近多项式时间趋势的自回归模型的估计方法。样条函数具有在适当程度上逼近非线性时间序列的多项式时间趋势模型的优点。对于贝叶斯参数估计,得到了两个对称损失函数下的条件后验分布。由于条件后验分布的复杂形式,采用马尔可夫链蒙特卡罗(MCMC)方法估计贝叶斯估计量。通过仿真研究,比较了贝叶斯估计器与相应的极大似然估计器在均方误差(MSE)和平均绝对偏差(AB)方面的性能。为了说明所提出的研究,本文分析了巴西、俄罗斯、印度、中国和南非(金砖国家)的进口系列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Estimation of the Polynomial Time Trend AR(1) Model through Spline Function
Abstract In this paper, we develop an estimation procedure for an autoregressive model with polynomial time trend approximated by a spline function. Spline function has the advantage of approximating the non-linear time series in an appropriate degree of polynomial time trend model. For Bayesian parameter estimation, the conditional posterior distribution is obtained under two symmetric loss functions. Due to the complex form of the conditional posterior distribution, Markov Chain Monte Carlo (MCMC) approach is used to estimate the Bayes estimators. The performance of Bayes estimators is compared with that of the corresponding maximum likelihood estimators (MLEs) in terms of mean squared error (MSE) and average absolute bias (AB) via a simulation study. To illustrate the proposed study, import series of Brazil, Russia, India, China, and South Africa (BRICS) countries are analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信