一种面向自动化企业的并行频繁项集挖掘算法

IF 4.4 4区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yimin Mao, Bin-Chang Wu, Qianhu Deng, S. Mahmoodi, Zhigang Chen, Yeh-Cheng Chen
{"title":"一种面向自动化企业的并行频繁项集挖掘算法","authors":"Yimin Mao, Bin-Chang Wu, Qianhu Deng, S. Mahmoodi, Zhigang Chen, Yeh-Cheng Chen","doi":"10.1080/17517575.2023.2204317","DOIUrl":null,"url":null,"abstract":"ABSTRACT Heterogeneity, volume and real-time velocity of manufacturing data affect the business efficiency within the process for analyzing data in Robotic Process Automation (RPA). A novel parallel frequent itemset mining algorithm based on MapReduce (PMRARIM-IEG) is designed to improve the business efficiency. The algorithm is designed to address issues such as the CanTree's excessive space usage, the inability to dynamically set the support threshold, and the time-consuming data transmission during the Map and Reduce phases. Experiments show that the proposed algorithm has lower memory usage and higher parallel efficiency than the traditional parallel frequent itemset mining algorithm.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel parallel frequent itemset mining algorithm for automatic enterprise\",\"authors\":\"Yimin Mao, Bin-Chang Wu, Qianhu Deng, S. Mahmoodi, Zhigang Chen, Yeh-Cheng Chen\",\"doi\":\"10.1080/17517575.2023.2204317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Heterogeneity, volume and real-time velocity of manufacturing data affect the business efficiency within the process for analyzing data in Robotic Process Automation (RPA). A novel parallel frequent itemset mining algorithm based on MapReduce (PMRARIM-IEG) is designed to improve the business efficiency. The algorithm is designed to address issues such as the CanTree's excessive space usage, the inability to dynamically set the support threshold, and the time-consuming data transmission during the Map and Reduce phases. Experiments show that the proposed algorithm has lower memory usage and higher parallel efficiency than the traditional parallel frequent itemset mining algorithm.\",\"PeriodicalId\":11750,\"journal\":{\"name\":\"Enterprise Information Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enterprise Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/17517575.2023.2204317\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2023.2204317","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在机器人过程自动化(RPA)中,制造数据的异构性、数量和实时速度会影响数据分析过程中的业务效率。为了提高业务效率,设计了一种基于MapReduce的并行频繁项集挖掘算法(PMRARIM-EG)。该算法旨在解决CanTree过度使用空间、无法动态设置支持阈值以及Map和Reduce阶段耗时的数据传输等问题。实验表明,与传统的并行频繁项集挖掘算法相比,该算法具有较低的内存占用率和较高的并行效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel parallel frequent itemset mining algorithm for automatic enterprise
ABSTRACT Heterogeneity, volume and real-time velocity of manufacturing data affect the business efficiency within the process for analyzing data in Robotic Process Automation (RPA). A novel parallel frequent itemset mining algorithm based on MapReduce (PMRARIM-IEG) is designed to improve the business efficiency. The algorithm is designed to address issues such as the CanTree's excessive space usage, the inability to dynamically set the support threshold, and the time-consuming data transmission during the Map and Reduce phases. Experiments show that the proposed algorithm has lower memory usage and higher parallel efficiency than the traditional parallel frequent itemset mining algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Enterprise Information Systems
Enterprise Information Systems 工程技术-计算机:信息系统
CiteScore
11.00
自引率
6.80%
发文量
24
审稿时长
6 months
期刊介绍: Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信