基于霍奇金-赫胥黎模型的记忆神经形态回路中癫痫样活动的智能控制

IF 1.6 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
W. M. Bessa, G. S. Lima
{"title":"基于霍奇金-赫胥黎模型的记忆神经形态回路中癫痫样活动的智能控制","authors":"W. M. Bessa, G. S. Lima","doi":"10.3390/jlpea12040054","DOIUrl":null,"url":null,"abstract":"Memristive neuromorphic systems represent one of the most promising technologies to overcome the current challenges faced by conventional computer systems. They have recently been proposed for a wide variety of applications, such as nonvolatile computer memory, neuroprosthetics, and brain–machine interfaces. However, due to their intrinsically nonlinear characteristics, they present a very complex dynamic behavior, including self-sustained oscillations, seizure-like events, and chaos, which may compromise their use in closed-loop systems. In this work, a novel intelligent controller is proposed to suppress seizure-like events in a memristive circuit based on the Hodgkin–Huxley equations. For this purpose, an adaptive neural network is adopted within a Lyapunov-based nonlinear control scheme to attenuate bursting dynamics in the circuit, while compensating for modeling uncertainties and external disturbances. The boundedness and convergence properties of the proposed control scheme are rigorously proved by means of a Lyapunov-like stability analysis. The obtained results confirm the effectiveness of the proposed intelligent controller, presenting a much improved performance when compared with a conventional nonlinear control scheme.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent Control of Seizure-Like Activity in a Memristive Neuromorphic Circuit Based on the Hodgkin–Huxley Model\",\"authors\":\"W. M. Bessa, G. S. Lima\",\"doi\":\"10.3390/jlpea12040054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memristive neuromorphic systems represent one of the most promising technologies to overcome the current challenges faced by conventional computer systems. They have recently been proposed for a wide variety of applications, such as nonvolatile computer memory, neuroprosthetics, and brain–machine interfaces. However, due to their intrinsically nonlinear characteristics, they present a very complex dynamic behavior, including self-sustained oscillations, seizure-like events, and chaos, which may compromise their use in closed-loop systems. In this work, a novel intelligent controller is proposed to suppress seizure-like events in a memristive circuit based on the Hodgkin–Huxley equations. For this purpose, an adaptive neural network is adopted within a Lyapunov-based nonlinear control scheme to attenuate bursting dynamics in the circuit, while compensating for modeling uncertainties and external disturbances. The boundedness and convergence properties of the proposed control scheme are rigorously proved by means of a Lyapunov-like stability analysis. The obtained results confirm the effectiveness of the proposed intelligent controller, presenting a much improved performance when compared with a conventional nonlinear control scheme.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea12040054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea12040054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

记忆神经形态系统是克服当前传统计算机系统所面临挑战的最有前途的技术之一。它们最近被提议用于各种各样的应用,如非易失性计算机存储器、神经修复术和脑机接口。然而,由于其固有的非线性特性,它们呈现出非常复杂的动态行为,包括自持续振荡、类癫痫事件和混沌,这可能会影响它们在闭环系统中的应用。在这项工作中,提出了一种基于霍奇金-赫胥黎方程的新型智能控制器来抑制记忆电路中的类癫痫事件。为此,在基于lyapunov的非线性控制方案中采用自适应神经网络来衰减电路中的爆发动力学,同时补偿建模的不确定性和外部干扰。通过类李雅普诺夫稳定性分析,严格证明了该控制方案的有界性和收敛性。实验结果证实了所提出的智能控制器的有效性,与传统的非线性控制方案相比,其性能有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Control of Seizure-Like Activity in a Memristive Neuromorphic Circuit Based on the Hodgkin–Huxley Model
Memristive neuromorphic systems represent one of the most promising technologies to overcome the current challenges faced by conventional computer systems. They have recently been proposed for a wide variety of applications, such as nonvolatile computer memory, neuroprosthetics, and brain–machine interfaces. However, due to their intrinsically nonlinear characteristics, they present a very complex dynamic behavior, including self-sustained oscillations, seizure-like events, and chaos, which may compromise their use in closed-loop systems. In this work, a novel intelligent controller is proposed to suppress seizure-like events in a memristive circuit based on the Hodgkin–Huxley equations. For this purpose, an adaptive neural network is adopted within a Lyapunov-based nonlinear control scheme to attenuate bursting dynamics in the circuit, while compensating for modeling uncertainties and external disturbances. The boundedness and convergence properties of the proposed control scheme are rigorously proved by means of a Lyapunov-like stability analysis. The obtained results confirm the effectiveness of the proposed intelligent controller, presenting a much improved performance when compared with a conventional nonlinear control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Low Power Electronics and Applications
Journal of Low Power Electronics and Applications Engineering-Electrical and Electronic Engineering
CiteScore
3.60
自引率
14.30%
发文量
57
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信