细分图的调和指数

IF 0.6 Q3 MATHEMATICS
B. N. Onagh
{"title":"细分图的调和指数","authors":"B. N. Onagh","doi":"10.22108/TOC.2017.21471","DOIUrl":null,"url":null,"abstract":"‎The harmonic index of a graph $G$ is defined as the sum of the weights‎ ‎$frac{2}{deg_G(u)+deg_G(v)}$ of all edges $uv$‎ ‎of $G$‎, ‎where $deg_G(u)$ denotes the degree of a vertex $u$ in $G$‎. ‎In this paper‎, ‎we study the harmonic index of subdivision graphs‎, ‎$t$-subdivision graphs and also‎, ‎$S$-sum and $S_t$-sum of graphs‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"15-27"},"PeriodicalIF":0.6000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The harmonic index of subdivision graphs\",\"authors\":\"B. N. Onagh\",\"doi\":\"10.22108/TOC.2017.21471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎The harmonic index of a graph $G$ is defined as the sum of the weights‎ ‎$frac{2}{deg_G(u)+deg_G(v)}$ of all edges $uv$‎ ‎of $G$‎, ‎where $deg_G(u)$ denotes the degree of a vertex $u$ in $G$‎. ‎In this paper‎, ‎we study the harmonic index of subdivision graphs‎, ‎$t$-subdivision graphs and also‎, ‎$S$-sum and $S_t$-sum of graphs‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"6 1\",\"pages\":\"15-27\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2017.21471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.21471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

图$G$的调和指数被定义为$G$ $的所有边$uv$ $ $的权值$frac{2}{deg_G(u)+deg_G(v)}$的和,其中$deg_G(u)$表示顶点$u$在$G$ $ $中的度数$u$。本文研究了细分图、$t -细分图的调和指数以及图的$S -sum和$S_t -sum的调和指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The harmonic index of subdivision graphs
‎The harmonic index of a graph $G$ is defined as the sum of the weights‎ ‎$frac{2}{deg_G(u)+deg_G(v)}$ of all edges $uv$‎ ‎of $G$‎, ‎where $deg_G(u)$ denotes the degree of a vertex $u$ in $G$‎. ‎In this paper‎, ‎we study the harmonic index of subdivision graphs‎, ‎$t$-subdivision graphs and also‎, ‎$S$-sum and $S_t$-sum of graphs‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信