{"title":"亚洲季风气候下高寒源区峰值径流控制因素及特征","authors":"K. Sakakibara, Keisuke Suzuki","doi":"10.1659/MRD-JOURNAL-D-21-00030.1","DOIUrl":null,"url":null,"abstract":"Understanding the mountain hydrological cycle, including runoff processes, is important for water-related disaster prevention. Although the process of peak runoff generation is closely related to water hazards, this process has not been clarified in alpine headwaters with large amounts of precipitation. In this study, we conducted hydrological observations to clarify runoff characteristics and factors that determine peak runoff in an alpine headwater under the Asian monsoon climate. Total precipitation during the summer period (3 months) was 1581.4 mm, and the water runoff responded quickly and clearly to rainfall events. Focusing on baseflow, the runoff was terminated when the snow cover area decreased. This suggested that snowmelt water plays an important role in maintaining baseflow in alpine headwaters under the Asian monsoon climate, like other alpine areas worldwide. In addition, peak runoff was not significantly correlated with soil wetness (as indicated by the antecedent precipitation index), whereas it was correlated with the amount of rainfall just before the generation of peak runoff. Therefore, the amount of rainfall before peak runoff in a single event was important in determining peak runoff. Focusing on the snowmelt season, we confirmed that the runoff increased even during small rainfall events. This indicated that snowpack melting is another factor determining peak runoff when the snowpack remains in the catchment. Considering the immediate runoff generation after rainfall events, direct observation of hydrometeorological data in situ is crucial to predict water-related disasters and consider countermeasures in alpine regions.","PeriodicalId":49793,"journal":{"name":"Mountain Research and Development","volume":"42 1","pages":"R1 - R8"},"PeriodicalIF":1.7000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Controlling Factors and Characteristics of Peak Runoff in an Alpine Headwater Under the Asian Monsoon Climate\",\"authors\":\"K. Sakakibara, Keisuke Suzuki\",\"doi\":\"10.1659/MRD-JOURNAL-D-21-00030.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the mountain hydrological cycle, including runoff processes, is important for water-related disaster prevention. Although the process of peak runoff generation is closely related to water hazards, this process has not been clarified in alpine headwaters with large amounts of precipitation. In this study, we conducted hydrological observations to clarify runoff characteristics and factors that determine peak runoff in an alpine headwater under the Asian monsoon climate. Total precipitation during the summer period (3 months) was 1581.4 mm, and the water runoff responded quickly and clearly to rainfall events. Focusing on baseflow, the runoff was terminated when the snow cover area decreased. This suggested that snowmelt water plays an important role in maintaining baseflow in alpine headwaters under the Asian monsoon climate, like other alpine areas worldwide. In addition, peak runoff was not significantly correlated with soil wetness (as indicated by the antecedent precipitation index), whereas it was correlated with the amount of rainfall just before the generation of peak runoff. Therefore, the amount of rainfall before peak runoff in a single event was important in determining peak runoff. Focusing on the snowmelt season, we confirmed that the runoff increased even during small rainfall events. This indicated that snowpack melting is another factor determining peak runoff when the snowpack remains in the catchment. Considering the immediate runoff generation after rainfall events, direct observation of hydrometeorological data in situ is crucial to predict water-related disasters and consider countermeasures in alpine regions.\",\"PeriodicalId\":49793,\"journal\":{\"name\":\"Mountain Research and Development\",\"volume\":\"42 1\",\"pages\":\"R1 - R8\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mountain Research and Development\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1659/MRD-JOURNAL-D-21-00030.1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mountain Research and Development","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1659/MRD-JOURNAL-D-21-00030.1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Controlling Factors and Characteristics of Peak Runoff in an Alpine Headwater Under the Asian Monsoon Climate
Understanding the mountain hydrological cycle, including runoff processes, is important for water-related disaster prevention. Although the process of peak runoff generation is closely related to water hazards, this process has not been clarified in alpine headwaters with large amounts of precipitation. In this study, we conducted hydrological observations to clarify runoff characteristics and factors that determine peak runoff in an alpine headwater under the Asian monsoon climate. Total precipitation during the summer period (3 months) was 1581.4 mm, and the water runoff responded quickly and clearly to rainfall events. Focusing on baseflow, the runoff was terminated when the snow cover area decreased. This suggested that snowmelt water plays an important role in maintaining baseflow in alpine headwaters under the Asian monsoon climate, like other alpine areas worldwide. In addition, peak runoff was not significantly correlated with soil wetness (as indicated by the antecedent precipitation index), whereas it was correlated with the amount of rainfall just before the generation of peak runoff. Therefore, the amount of rainfall before peak runoff in a single event was important in determining peak runoff. Focusing on the snowmelt season, we confirmed that the runoff increased even during small rainfall events. This indicated that snowpack melting is another factor determining peak runoff when the snowpack remains in the catchment. Considering the immediate runoff generation after rainfall events, direct observation of hydrometeorological data in situ is crucial to predict water-related disasters and consider countermeasures in alpine regions.
期刊介绍:
MRD features three peer-reviewed sections: MountainDevelopment, which contains “Transformation Knowledge,” MountainResearch, which contains “Systems Knowledge,” and MountainAgenda, which contains “Target Knowledge.” In addition, the MountainPlatform section offers International Mountain Society members an opportunity to convey information about their mountain initiatives and priorities; and the MountainMedia section presents reviews of recent publications on mountains and mountain development.
Key research and development fields:
-Society and culture-
Policy, politics, and institutions-
Economy-
Bio- and geophysical environment-
Ecosystems and cycles-
Environmental risks-
Resource and land use-
Energy, infrastructure, and services-
Methods and theories-
Regions