基于mad的RFI切割在FPGA上的实时实现

IF 1.5 Q3 ASTRONOMY & ASTROPHYSICS
K. Buch, K. Naik, Swapnil Nalawade, Shruti Bhatporia, Y. Gupta, B. Ajithkumar
{"title":"基于mad的RFI切割在FPGA上的实时实现","authors":"K. Buch, K. Naik, Swapnil Nalawade, Shruti Bhatporia, Y. Gupta, B. Ajithkumar","doi":"10.1142/S2251171719400063","DOIUrl":null,"url":null,"abstract":"Radio Frequency Interference (RFI) excision in wideband radio telescope receivers is gaining significance due to increasing levels of manmade RFI and operation outside the protected radio astronomy bands. The effect of RFI on astronomical data can be significantly reduced through real-time excision. In this paper, Median Absolute Deviation (MAD) is used for excising signals corrupted by strong impulsive interference. MAD estimation requires recursive median calculation which is a computationally challenging problem for real-time excision. This challenge is addressed by implementation of a histogram-based technique for MAD computation. The architecture is developed and optimized for Field Programmable Gate Array (FPGA) implementation. The design of a more robust variant of MAD called Median-of-MAD (MoM) is described. The architecture of MAD and MoM techniques and subsequent optimization allows for four RFI excision blocks on a single Xilinx Virtex-5 FPGA. These techniques have been tested on the GMRT wideband backend (GWB) processing a maximum of 400[Formula: see text]MHz bandwidth and the results show significant improvement in the signal-to-noise ratio (SNR).","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171719400063","citationCount":"2","resultStr":"{\"title\":\"Real-Time Implementation of MAD-Based RFI Excision on FPGA\",\"authors\":\"K. Buch, K. Naik, Swapnil Nalawade, Shruti Bhatporia, Y. Gupta, B. Ajithkumar\",\"doi\":\"10.1142/S2251171719400063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio Frequency Interference (RFI) excision in wideband radio telescope receivers is gaining significance due to increasing levels of manmade RFI and operation outside the protected radio astronomy bands. The effect of RFI on astronomical data can be significantly reduced through real-time excision. In this paper, Median Absolute Deviation (MAD) is used for excising signals corrupted by strong impulsive interference. MAD estimation requires recursive median calculation which is a computationally challenging problem for real-time excision. This challenge is addressed by implementation of a histogram-based technique for MAD computation. The architecture is developed and optimized for Field Programmable Gate Array (FPGA) implementation. The design of a more robust variant of MAD called Median-of-MAD (MoM) is described. The architecture of MAD and MoM techniques and subsequent optimization allows for four RFI excision blocks on a single Xilinx Virtex-5 FPGA. These techniques have been tested on the GMRT wideband backend (GWB) processing a maximum of 400[Formula: see text]MHz bandwidth and the results show significant improvement in the signal-to-noise ratio (SNR).\",\"PeriodicalId\":45132,\"journal\":{\"name\":\"Journal of Astronomical Instrumentation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S2251171719400063\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2251171719400063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251171719400063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

由于人造射频干扰水平的增加和在受保护的射电天文波段之外的操作,宽带射电望远镜接收器中的射频干扰(RFI)切除越来越重要。RFI对天文数据的影响可以通过实时切除显著降低。本文将中值绝对偏差(MAD)用于强脉冲干扰信号的去除。MAD估计需要递归中值计算,这对于实时切除来说是一个具有计算挑战性的问题。通过实现基于直方图的MAD计算技术来解决这一挑战。该体系结构是为现场可编程门阵列(FPGA)的实现而开发和优化的。描述了一种更稳健的MAD变体,称为MAD中值(MoM)的设计。MAD和MoM技术的架构以及随后的优化允许在单个Xilinx Virtex-5 FPGA上进行四个RFI切除块。这些技术已经在GMRT宽带后端(GWB)上进行了测试,最大处理400[公式:见正文]MHz带宽,结果显示信噪比(SNR)显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Implementation of MAD-Based RFI Excision on FPGA
Radio Frequency Interference (RFI) excision in wideband radio telescope receivers is gaining significance due to increasing levels of manmade RFI and operation outside the protected radio astronomy bands. The effect of RFI on astronomical data can be significantly reduced through real-time excision. In this paper, Median Absolute Deviation (MAD) is used for excising signals corrupted by strong impulsive interference. MAD estimation requires recursive median calculation which is a computationally challenging problem for real-time excision. This challenge is addressed by implementation of a histogram-based technique for MAD computation. The architecture is developed and optimized for Field Programmable Gate Array (FPGA) implementation. The design of a more robust variant of MAD called Median-of-MAD (MoM) is described. The architecture of MAD and MoM techniques and subsequent optimization allows for four RFI excision blocks on a single Xilinx Virtex-5 FPGA. These techniques have been tested on the GMRT wideband backend (GWB) processing a maximum of 400[Formula: see text]MHz bandwidth and the results show significant improvement in the signal-to-noise ratio (SNR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Astronomical Instrumentation
Journal of Astronomical Instrumentation ASTRONOMY & ASTROPHYSICS-
CiteScore
2.30
自引率
7.70%
发文量
19
期刊介绍: The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信