{"title":"非均匀低温下半导体层中载流子扩散的随机共振","authors":"Berhanu Aragie","doi":"10.1080/23324309.2019.1709873","DOIUrl":null,"url":null,"abstract":"Abstract We study the dynamics of charge carriers jumping from one trap to the other of potential trap depth Φ in a one-dimensional semiconductor layer with the help of thermal noise. Applying a nonuniform temperature, colder around the center and hotter on moving away from it, favors the charge carriers to migrate toward the center and populate around the center. However, exposing the system to another additional nonuniform temperature, hotter around the center, forced the charge carriers to redistribute around two points. The trap potential together with the nonuniform temperature forms a system similar to having bistable potential. Diffusion of charge carriers and thermally transition rate, in a high barrier limit, as a function of controlling parameters has been explored. Due to a time-varying signal the system shows stochastic resonance (SR). The noise that made phase transition also favors the system to exhibit SR by applying a time varying signal. Using two-state approximation, SR of charge carriers diffusion, both analytical and numerical simulation, has been investigated. Our finding shows a strong spectral amplification η at a low temperature.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"49 1","pages":"102 - 88"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23324309.2019.1709873","citationCount":"2","resultStr":"{\"title\":\"Stochastic Resonance of Charge Carriers Diffusion in a Semiconductor Layer under a Nonuniform Low Temperature\",\"authors\":\"Berhanu Aragie\",\"doi\":\"10.1080/23324309.2019.1709873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the dynamics of charge carriers jumping from one trap to the other of potential trap depth Φ in a one-dimensional semiconductor layer with the help of thermal noise. Applying a nonuniform temperature, colder around the center and hotter on moving away from it, favors the charge carriers to migrate toward the center and populate around the center. However, exposing the system to another additional nonuniform temperature, hotter around the center, forced the charge carriers to redistribute around two points. The trap potential together with the nonuniform temperature forms a system similar to having bistable potential. Diffusion of charge carriers and thermally transition rate, in a high barrier limit, as a function of controlling parameters has been explored. Due to a time-varying signal the system shows stochastic resonance (SR). The noise that made phase transition also favors the system to exhibit SR by applying a time varying signal. Using two-state approximation, SR of charge carriers diffusion, both analytical and numerical simulation, has been investigated. Our finding shows a strong spectral amplification η at a low temperature.\",\"PeriodicalId\":54305,\"journal\":{\"name\":\"Journal of Computational and Theoretical Transport\",\"volume\":\"49 1\",\"pages\":\"102 - 88\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23324309.2019.1709873\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23324309.2019.1709873\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2019.1709873","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stochastic Resonance of Charge Carriers Diffusion in a Semiconductor Layer under a Nonuniform Low Temperature
Abstract We study the dynamics of charge carriers jumping from one trap to the other of potential trap depth Φ in a one-dimensional semiconductor layer with the help of thermal noise. Applying a nonuniform temperature, colder around the center and hotter on moving away from it, favors the charge carriers to migrate toward the center and populate around the center. However, exposing the system to another additional nonuniform temperature, hotter around the center, forced the charge carriers to redistribute around two points. The trap potential together with the nonuniform temperature forms a system similar to having bistable potential. Diffusion of charge carriers and thermally transition rate, in a high barrier limit, as a function of controlling parameters has been explored. Due to a time-varying signal the system shows stochastic resonance (SR). The noise that made phase transition also favors the system to exhibit SR by applying a time varying signal. Using two-state approximation, SR of charge carriers diffusion, both analytical and numerical simulation, has been investigated. Our finding shows a strong spectral amplification η at a low temperature.
期刊介绍:
Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.