{"title":"加性布朗运动气泡和布朗薄片边界的豪斯多夫维数","authors":"R. Dalang, T. Mountford","doi":"10.4064/dm811-9-2021","DOIUrl":null,"url":null,"abstract":"We first consider the additive Brownian motion process $(X(s_1,s_2),\\ (s_1,s_2) \\in \\mathbb{R}^2)$ defined by $X(s_1,s_2) = Z_1(s_1) - Z_2 (s_2)$, where $Z_1$ and $Z_2 $ are two independent (two-sided) Brownian motions. We show that with probability one, the Hausdorff dimension of the boundary of any connected component of the random set $\\{(s_1,s_2)\\in \\mathbb{R}^2: X(s_1,s_2) >0\\}$ is equal to $$ \n\\frac{1}{4}\\left(1 + \\sqrt{13 + 4 \\sqrt{5}}\\right) \\simeq 1.421\\, . $$ Then the same result is shown to hold when $X$ is replaced by a standard Brownian sheet indexed by the nonnegative quadrant.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hausdorff dimension of the boundary of bubbles of additive Brownian motion and of the Brownian sheet\",\"authors\":\"R. Dalang, T. Mountford\",\"doi\":\"10.4064/dm811-9-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first consider the additive Brownian motion process $(X(s_1,s_2),\\\\ (s_1,s_2) \\\\in \\\\mathbb{R}^2)$ defined by $X(s_1,s_2) = Z_1(s_1) - Z_2 (s_2)$, where $Z_1$ and $Z_2 $ are two independent (two-sided) Brownian motions. We show that with probability one, the Hausdorff dimension of the boundary of any connected component of the random set $\\\\{(s_1,s_2)\\\\in \\\\mathbb{R}^2: X(s_1,s_2) >0\\\\}$ is equal to $$ \\n\\\\frac{1}{4}\\\\left(1 + \\\\sqrt{13 + 4 \\\\sqrt{5}}\\\\right) \\\\simeq 1.421\\\\, . $$ Then the same result is shown to hold when $X$ is replaced by a standard Brownian sheet indexed by the nonnegative quadrant.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm811-9-2021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm811-9-2021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hausdorff dimension of the boundary of bubbles of additive Brownian motion and of the Brownian sheet
We first consider the additive Brownian motion process $(X(s_1,s_2),\ (s_1,s_2) \in \mathbb{R}^2)$ defined by $X(s_1,s_2) = Z_1(s_1) - Z_2 (s_2)$, where $Z_1$ and $Z_2 $ are two independent (two-sided) Brownian motions. We show that with probability one, the Hausdorff dimension of the boundary of any connected component of the random set $\{(s_1,s_2)\in \mathbb{R}^2: X(s_1,s_2) >0\}$ is equal to $$
\frac{1}{4}\left(1 + \sqrt{13 + 4 \sqrt{5}}\right) \simeq 1.421\, . $$ Then the same result is shown to hold when $X$ is replaced by a standard Brownian sheet indexed by the nonnegative quadrant.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.