关于伪有界和准拓扑群

Q3 Mathematics
A. Ravsky, T. Banakh
{"title":"关于伪有界和准拓扑群","authors":"A. Ravsky, T. Banakh","doi":"10.30970/ms.56.1.20-27","DOIUrl":null,"url":null,"abstract":"Let $G$ be a paratopological group.Following F.~Lin and S.~Lin, we say that the group $G$ is pseudobounded,if for any neighborhood $U$ of the identity of $G$,there exists a natural number $n$ such that $U^n=G$.The group $G$ is $\\omega$-pseudobounded,if for any neighborhood $U$ of the identity of $G$, the group $G$ is aunion of sets $U^n$, where $n$ is a natural number.The group $G$ is premeager, if $G\\ne N^n$ for any nowhere dense subset $N$ of$G$ and any positive integer $n$.In this paper we investigate relations between the above classes of groups andanswer some questions posed by F. Lin, S. Lin, and S\\'anchez.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On pseudobounded and premeage paratopological groups\",\"authors\":\"A. Ravsky, T. Banakh\",\"doi\":\"10.30970/ms.56.1.20-27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a paratopological group.Following F.~Lin and S.~Lin, we say that the group $G$ is pseudobounded,if for any neighborhood $U$ of the identity of $G$,there exists a natural number $n$ such that $U^n=G$.The group $G$ is $\\\\omega$-pseudobounded,if for any neighborhood $U$ of the identity of $G$, the group $G$ is aunion of sets $U^n$, where $n$ is a natural number.The group $G$ is premeager, if $G\\\\ne N^n$ for any nowhere dense subset $N$ of$G$ and any positive integer $n$.In this paper we investigate relations between the above classes of groups andanswer some questions posed by F. Lin, S. Lin, and S\\\\'anchez.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.56.1.20-27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.56.1.20-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设$G$是一个准拓扑群。继F.~Lin和S.~Lin之后,我们证明了群$G$是伪有界的,如果对于$G$的单位元的任意邻域$U$,存在一个自然数$n$使得$U^n=G$。群$G$是$\ $-伪有界,如果对于$G$的单位元的任意邻域$U$,则群$G$是集合$U^n$的并集,其中$n$是自然数。群$G$是先验的,如果$G\ne N^ N$对于任何无处稠密的子集$G$和任何正整数$N$。本文研究了上述两类群之间的关系,并回答了F. Lin、S. Lin和S 'anchez提出的一些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On pseudobounded and premeage paratopological groups
Let $G$ be a paratopological group.Following F.~Lin and S.~Lin, we say that the group $G$ is pseudobounded,if for any neighborhood $U$ of the identity of $G$,there exists a natural number $n$ such that $U^n=G$.The group $G$ is $\omega$-pseudobounded,if for any neighborhood $U$ of the identity of $G$, the group $G$ is aunion of sets $U^n$, where $n$ is a natural number.The group $G$ is premeager, if $G\ne N^n$ for any nowhere dense subset $N$ of$G$ and any positive integer $n$.In this paper we investigate relations between the above classes of groups andanswer some questions posed by F. Lin, S. Lin, and S\'anchez.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信