网络结构与社会学习

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Krishna Dasaratha, Kevin He
{"title":"网络结构与社会学习","authors":"Krishna Dasaratha, Kevin He","doi":"10.1145/3505156.3505163","DOIUrl":null,"url":null,"abstract":"We describe results from Dasaratha and He [DH21a] and Dasaratha and He [DH20] about how network structure influences social learning outcomes. These papers share a tractable sequential model that lets us compare learning dynamics across networks. With Bayesian agents, incomplete networks can generate informational confounding that makes learning arbitrarily inefficient. With naive agents, related forces can lead to mislearning.","PeriodicalId":56237,"journal":{"name":"ACM SIGecom Exchanges","volume":"19 1","pages":"62 - 67"},"PeriodicalIF":0.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network structure and social learning\",\"authors\":\"Krishna Dasaratha, Kevin He\",\"doi\":\"10.1145/3505156.3505163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe results from Dasaratha and He [DH21a] and Dasaratha and He [DH20] about how network structure influences social learning outcomes. These papers share a tractable sequential model that lets us compare learning dynamics across networks. With Bayesian agents, incomplete networks can generate informational confounding that makes learning arbitrarily inefficient. With naive agents, related forces can lead to mislearning.\",\"PeriodicalId\":56237,\"journal\":{\"name\":\"ACM SIGecom Exchanges\",\"volume\":\"19 1\",\"pages\":\"62 - 67\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGecom Exchanges\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3505156.3505163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGecom Exchanges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3505156.3505163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了Dasaratha和He[DH21a]以及Dasartha和He[DD20]关于网络结构如何影响社会学习结果的结果。这些论文共享一个易于处理的顺序模型,使我们能够比较网络之间的学习动态。有了贝叶斯代理,不完全网络会产生信息混杂,使学习变得任意低效。对于天真的代理人,相关的力量可能会导致错误的学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network structure and social learning
We describe results from Dasaratha and He [DH21a] and Dasaratha and He [DH20] about how network structure influences social learning outcomes. These papers share a tractable sequential model that lets us compare learning dynamics across networks. With Bayesian agents, incomplete networks can generate informational confounding that makes learning arbitrarily inefficient. With naive agents, related forces can lead to mislearning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM SIGecom Exchanges
ACM SIGecom Exchanges COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信