利用雷达微多普勒光谱图像对鸟类和小型无人机进行分类和鉴别

Signals Pub Date : 2023-05-18 DOI:10.3390/signals4020018
R. Narayanan, Bryan Tsang, Ramesh Bharadwaj
{"title":"利用雷达微多普勒光谱图像对鸟类和小型无人机进行分类和鉴别","authors":"R. Narayanan, Bryan Tsang, Ramesh Bharadwaj","doi":"10.3390/signals4020018","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of micro-Doppler spectrogram signatures of flying targets, such as drones and birds, to aid in their remote classification. Using a custom-designed 10-GHz continuous wave (CW) radar system, measurements from different scenarios on a variety of targets were recorded to create datasets for image classification. Time/velocity spectrograms generated for micro-Doppler analysis of multiple drones and birds were used for target identification and movement classification using TensorFlow. Using support vector machines (SVMs), the results showed an accuracy of about 90% for drone size classification, about 96% for drone vs. bird classification, and about 85% for individual drone and bird distinction between five classes. Different characteristics of target detection were explored, including the landscape and behavior of the target.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and Discrimination of Birds and Small Drones Using Radar Micro-Doppler Spectrogram Images\",\"authors\":\"R. Narayanan, Bryan Tsang, Ramesh Bharadwaj\",\"doi\":\"10.3390/signals4020018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the use of micro-Doppler spectrogram signatures of flying targets, such as drones and birds, to aid in their remote classification. Using a custom-designed 10-GHz continuous wave (CW) radar system, measurements from different scenarios on a variety of targets were recorded to create datasets for image classification. Time/velocity spectrograms generated for micro-Doppler analysis of multiple drones and birds were used for target identification and movement classification using TensorFlow. Using support vector machines (SVMs), the results showed an accuracy of about 90% for drone size classification, about 96% for drone vs. bird classification, and about 85% for individual drone and bird distinction between five classes. Different characteristics of target detection were explored, including the landscape and behavior of the target.\",\"PeriodicalId\":93815,\"journal\":{\"name\":\"Signals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/signals4020018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals4020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了使用飞行目标(如无人机和鸟类)的微多普勒频谱图特征来帮助对其进行远程分类。使用定制设计的10 GHz连续波(CW)雷达系统,记录各种目标上不同场景的测量结果,以创建用于图像分类的数据集。为多架无人机和鸟类的微多普勒分析生成的时间/速度频谱图用于TensorFlow的目标识别和运动分类。使用支持向量机(SVM),结果显示,无人机大小分类的准确率约为90%,无人机与鸟类分类的准确度约为96%,无人机个体和鸟类在五个类别之间的区分的准确率为85%。探讨了目标检测的不同特征,包括目标的景观和行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification and Discrimination of Birds and Small Drones Using Radar Micro-Doppler Spectrogram Images
This paper investigates the use of micro-Doppler spectrogram signatures of flying targets, such as drones and birds, to aid in their remote classification. Using a custom-designed 10-GHz continuous wave (CW) radar system, measurements from different scenarios on a variety of targets were recorded to create datasets for image classification. Time/velocity spectrograms generated for micro-Doppler analysis of multiple drones and birds were used for target identification and movement classification using TensorFlow. Using support vector machines (SVMs), the results showed an accuracy of about 90% for drone size classification, about 96% for drone vs. bird classification, and about 85% for individual drone and bird distinction between five classes. Different characteristics of target detection were explored, including the landscape and behavior of the target.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信