{"title":"利用雷达微多普勒光谱图像对鸟类和小型无人机进行分类和鉴别","authors":"R. Narayanan, Bryan Tsang, Ramesh Bharadwaj","doi":"10.3390/signals4020018","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of micro-Doppler spectrogram signatures of flying targets, such as drones and birds, to aid in their remote classification. Using a custom-designed 10-GHz continuous wave (CW) radar system, measurements from different scenarios on a variety of targets were recorded to create datasets for image classification. Time/velocity spectrograms generated for micro-Doppler analysis of multiple drones and birds were used for target identification and movement classification using TensorFlow. Using support vector machines (SVMs), the results showed an accuracy of about 90% for drone size classification, about 96% for drone vs. bird classification, and about 85% for individual drone and bird distinction between five classes. Different characteristics of target detection were explored, including the landscape and behavior of the target.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and Discrimination of Birds and Small Drones Using Radar Micro-Doppler Spectrogram Images\",\"authors\":\"R. Narayanan, Bryan Tsang, Ramesh Bharadwaj\",\"doi\":\"10.3390/signals4020018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the use of micro-Doppler spectrogram signatures of flying targets, such as drones and birds, to aid in their remote classification. Using a custom-designed 10-GHz continuous wave (CW) radar system, measurements from different scenarios on a variety of targets were recorded to create datasets for image classification. Time/velocity spectrograms generated for micro-Doppler analysis of multiple drones and birds were used for target identification and movement classification using TensorFlow. Using support vector machines (SVMs), the results showed an accuracy of about 90% for drone size classification, about 96% for drone vs. bird classification, and about 85% for individual drone and bird distinction between five classes. Different characteristics of target detection were explored, including the landscape and behavior of the target.\",\"PeriodicalId\":93815,\"journal\":{\"name\":\"Signals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/signals4020018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals4020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification and Discrimination of Birds and Small Drones Using Radar Micro-Doppler Spectrogram Images
This paper investigates the use of micro-Doppler spectrogram signatures of flying targets, such as drones and birds, to aid in their remote classification. Using a custom-designed 10-GHz continuous wave (CW) radar system, measurements from different scenarios on a variety of targets were recorded to create datasets for image classification. Time/velocity spectrograms generated for micro-Doppler analysis of multiple drones and birds were used for target identification and movement classification using TensorFlow. Using support vector machines (SVMs), the results showed an accuracy of about 90% for drone size classification, about 96% for drone vs. bird classification, and about 85% for individual drone and bird distinction between five classes. Different characteristics of target detection were explored, including the landscape and behavior of the target.