关于固定素数上理想类的奇偶性

IF 1.7 1区 数学 Q1 MATHEMATICS
Jeongho Park
{"title":"关于固定素数上理想类的奇偶性","authors":"Jeongho Park","doi":"10.1353/ajm.2020.0003","DOIUrl":null,"url":null,"abstract":"abstract:For real quadratic number fields, we consider the order of ideal classes of split prime ideals, $P$, whose norm is a fixed rational prime. We collect fundamental discriminants satisfying a trivial condition for $P$ to be principal, and show that for a positive density of such discriminants, the cyclic subgroup of the ideal class group generated by $P$ does not have a 2-part.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"142 1","pages":"139 - 176"},"PeriodicalIF":1.7000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/ajm.2020.0003","citationCount":"2","resultStr":"{\"title\":\"On the parity of ideal classes over a fixed prime\",\"authors\":\"Jeongho Park\",\"doi\":\"10.1353/ajm.2020.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract:For real quadratic number fields, we consider the order of ideal classes of split prime ideals, $P$, whose norm is a fixed rational prime. We collect fundamental discriminants satisfying a trivial condition for $P$ to be principal, and show that for a positive density of such discriminants, the cyclic subgroup of the ideal class group generated by $P$ does not have a 2-part.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"142 1\",\"pages\":\"139 - 176\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1353/ajm.2020.0003\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2020.0003\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2020.0003","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

文摘:对于实二次数域,我们考虑分裂素数理想的理想类$P$的阶,其范数是固定有理素数。我们收集了满足$P$为主的平凡条件的基本判别式,并证明了对于这种判别式的正密度,由$P$生成的理想子群的循环子群不具有2-部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the parity of ideal classes over a fixed prime
abstract:For real quadratic number fields, we consider the order of ideal classes of split prime ideals, $P$, whose norm is a fixed rational prime. We collect fundamental discriminants satisfying a trivial condition for $P$ to be principal, and show that for a positive density of such discriminants, the cyclic subgroup of the ideal class group generated by $P$ does not have a 2-part.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信