{"title":"半素环上的Jordan三重(α,β)-高* -导数","authors":"O. H. Ezzat","doi":"10.1515/dema-2022-0213","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we define the following: Let N 0 {{\\mathbb{N}}}_{0} be the set of all nonnegative integers and D = ( d i ) i ∈ N 0 D={\\left({d}_{i})}_{i\\in {{\\mathbb{N}}}_{0}} a family of additive mappings of a ∗ \\ast -ring R R such that d 0 = i d R {d}_{0}=i{d}_{R} . D D is called a Jordan ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation (resp. a Jordan triple ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation) of R R if d n ( a 2 ) = ∑ i + j = n d i ( β j ( a ) ) d j ( α i ( a ∗ i ) ) {d}_{n}\\left({a}^{2})={\\sum }_{i+j=n}{d}_{i}\\left({\\beta }^{j}\\left(a)){d}_{j}\\left({\\alpha }^{i}\\left({a}^{{\\ast }^{i}})) (resp. d n ( a b a ) = ∑ i + j + k = n d i ( β j + k ( a ) ) d j ( β k ( α i ( b ∗ i ) ) ) d k ( α i + j ( a ∗ i + j ) ) {d}_{n}\\left(aba)={\\sum }_{i+j+k=n}{d}_{i}\\left({\\beta }^{j+k}\\left(a)){d}_{j}\\left({\\beta }^{k}\\left({\\alpha }^{i}\\left({b}^{{\\ast }^{i}}))){d}_{k}\\left({\\alpha }^{i+j}\\left({a}^{{\\ast }^{i+j}})) ) for all a , b ∈ R a,b\\in R and each n ∈ N 0 n\\in {{\\mathbb{N}}}_{0} . We show that the two notions of Jordan ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation and Jordan triple ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation on a 6-torsion free semiprime ∗ \\ast -ring are equivalent.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jordan triple (α,β)-higher ∗-derivations on semiprime rings\",\"authors\":\"O. H. Ezzat\",\"doi\":\"10.1515/dema-2022-0213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we define the following: Let N 0 {{\\\\mathbb{N}}}_{0} be the set of all nonnegative integers and D = ( d i ) i ∈ N 0 D={\\\\left({d}_{i})}_{i\\\\in {{\\\\mathbb{N}}}_{0}} a family of additive mappings of a ∗ \\\\ast -ring R R such that d 0 = i d R {d}_{0}=i{d}_{R} . D D is called a Jordan ( α , β ) \\\\left(\\\\alpha ,\\\\beta ) -higher ∗ \\\\ast -derivation (resp. a Jordan triple ( α , β ) \\\\left(\\\\alpha ,\\\\beta ) -higher ∗ \\\\ast -derivation) of R R if d n ( a 2 ) = ∑ i + j = n d i ( β j ( a ) ) d j ( α i ( a ∗ i ) ) {d}_{n}\\\\left({a}^{2})={\\\\sum }_{i+j=n}{d}_{i}\\\\left({\\\\beta }^{j}\\\\left(a)){d}_{j}\\\\left({\\\\alpha }^{i}\\\\left({a}^{{\\\\ast }^{i}})) (resp. d n ( a b a ) = ∑ i + j + k = n d i ( β j + k ( a ) ) d j ( β k ( α i ( b ∗ i ) ) ) d k ( α i + j ( a ∗ i + j ) ) {d}_{n}\\\\left(aba)={\\\\sum }_{i+j+k=n}{d}_{i}\\\\left({\\\\beta }^{j+k}\\\\left(a)){d}_{j}\\\\left({\\\\beta }^{k}\\\\left({\\\\alpha }^{i}\\\\left({b}^{{\\\\ast }^{i}}))){d}_{k}\\\\left({\\\\alpha }^{i+j}\\\\left({a}^{{\\\\ast }^{i+j}})) ) for all a , b ∈ R a,b\\\\in R and each n ∈ N 0 n\\\\in {{\\\\mathbb{N}}}_{0} . We show that the two notions of Jordan ( α , β ) \\\\left(\\\\alpha ,\\\\beta ) -higher ∗ \\\\ast -derivation and Jordan triple ( α , β ) \\\\left(\\\\alpha ,\\\\beta ) -higher ∗ \\\\ast -derivation on a 6-torsion free semiprime ∗ \\\\ast -ring are equivalent.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们定义如下:设N为0 {{\mathbb{N}}}_{0} 为所有非负整数的集合,且D= (d1) i∈n0 D={\left({d}_{I})}_{I\in {{\mathbb{N}}}_{0}} A *的一组可加映射 \ast -环R R使得d0 = i d R {d}_{0}= 1{d}_{r} 。D D被称为约当(α, β) \left(\alpha ,\beta ) -较高* \ast - derivative(衍生)Jordan三重(α, β) \left(\alpha ,\beta ) -较高* \ast 如果d n (a 2) =∑i + j = n d i (β j (a)) d j (α i (a * i)) {d}_{n}\left({a}^{2})={\sum }_{i+j=n}{d}_{I}\left({\beta }^{j}\left(a)){d}_{j}\left({\alpha }^{I}\left({a}^{{\ast }^{I}})(回答;回答D n (a b a) =∑I + j + k = n D I (β j + k (a)) D j (β k (α I (b∗I))) D k (α I + j (a∗I + j))) {d}_{n}\left(aba)={\sum }_{i+j+k=n}{d}_{I}\left({\beta }^{j+k}\left(a)){d}_{j}\left({\beta }^{k}\left({\alpha }^{I}\left({b}^{{\ast }^{I}}))){d}_{k}\left({\alpha }^{i+j}\left({a}^{{\ast }^{i+j}})))对于所有a,b∈R a,b\in R和每个n∈n0n\in {{\mathbb{N}}}_{0} 。我们证明了Jordan (α, β)的两个概念 \left(\alpha ,\beta ) -较高* \ast -衍生和Jordan三重(α, β) \left(\alpha ,\beta ) -较高* \ast 6-无扭转半素数*上的导数 \ast -环是等价的。
Jordan triple (α,β)-higher ∗-derivations on semiprime rings
Abstract In this article, we define the following: Let N 0 {{\mathbb{N}}}_{0} be the set of all nonnegative integers and D = ( d i ) i ∈ N 0 D={\left({d}_{i})}_{i\in {{\mathbb{N}}}_{0}} a family of additive mappings of a ∗ \ast -ring R R such that d 0 = i d R {d}_{0}=i{d}_{R} . D D is called a Jordan ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation (resp. a Jordan triple ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation) of R R if d n ( a 2 ) = ∑ i + j = n d i ( β j ( a ) ) d j ( α i ( a ∗ i ) ) {d}_{n}\left({a}^{2})={\sum }_{i+j=n}{d}_{i}\left({\beta }^{j}\left(a)){d}_{j}\left({\alpha }^{i}\left({a}^{{\ast }^{i}})) (resp. d n ( a b a ) = ∑ i + j + k = n d i ( β j + k ( a ) ) d j ( β k ( α i ( b ∗ i ) ) ) d k ( α i + j ( a ∗ i + j ) ) {d}_{n}\left(aba)={\sum }_{i+j+k=n}{d}_{i}\left({\beta }^{j+k}\left(a)){d}_{j}\left({\beta }^{k}\left({\alpha }^{i}\left({b}^{{\ast }^{i}}))){d}_{k}\left({\alpha }^{i+j}\left({a}^{{\ast }^{i+j}})) ) for all a , b ∈ R a,b\in R and each n ∈ N 0 n\in {{\mathbb{N}}}_{0} . We show that the two notions of Jordan ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation and Jordan triple ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation on a 6-torsion free semiprime ∗ \ast -ring are equivalent.