陆生脊椎动物群落能量利用的宏观生态学

Q2 Agricultural and Biological Sciences
Benjamin E. Carter, J. Alroy
{"title":"陆生脊椎动物群落能量利用的宏观生态学","authors":"Benjamin E. Carter, J. Alroy","doi":"10.21425/f5fbg56553","DOIUrl":null,"url":null,"abstract":"Energy is a fundamental macroecological property as it governs all ecological processes and interactions. Understanding variation in community energy use and its correlations is crucial to knowing how communities function across the globe. As an organism’s metabolic rate equates to its rate of energy flow, individual rates can predict community-level functioning. Here, daily rates of community energy flow are calculated for 118 bat, 109 bird, and 196 non-volant small mammal inventories from around the world. These were scaled up from individual metabolic rates that were obtained for the 416 bat, 1880 bird, and 562 small mammal species present in the samples. While controlling for spatial autocorrelation, rates were contrasted and compared to various ecological, environmental, geographic, and anthropogenic variables, using a method of sequential regression that renders the variables orthogonal to each other, thus addressing the issue of collinearity. In all groups, there is a strong positive correlation between community energy use and community mass, with biomass being the primary determinant of community energy flow. More surprisingly, there are strong biogeographic differences within and between groups. Bat communities energy the Neotropics, while small mammal communities have higher rates relative to mass in Holarctic realms. Investigations of individual-level patterns reveal that these differences are a direct result of contrasting patterns of abundance, average individual mass, and metabolic rates. These results indicate that community energy use is strongly linked to differences in ecology and evolutionary history within and among groups.","PeriodicalId":37788,"journal":{"name":"Frontiers of Biogeography","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The macroecology of community energy use in terrestrial vertebrates\",\"authors\":\"Benjamin E. Carter, J. Alroy\",\"doi\":\"10.21425/f5fbg56553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy is a fundamental macroecological property as it governs all ecological processes and interactions. Understanding variation in community energy use and its correlations is crucial to knowing how communities function across the globe. As an organism’s metabolic rate equates to its rate of energy flow, individual rates can predict community-level functioning. Here, daily rates of community energy flow are calculated for 118 bat, 109 bird, and 196 non-volant small mammal inventories from around the world. These were scaled up from individual metabolic rates that were obtained for the 416 bat, 1880 bird, and 562 small mammal species present in the samples. While controlling for spatial autocorrelation, rates were contrasted and compared to various ecological, environmental, geographic, and anthropogenic variables, using a method of sequential regression that renders the variables orthogonal to each other, thus addressing the issue of collinearity. In all groups, there is a strong positive correlation between community energy use and community mass, with biomass being the primary determinant of community energy flow. More surprisingly, there are strong biogeographic differences within and between groups. Bat communities energy the Neotropics, while small mammal communities have higher rates relative to mass in Holarctic realms. Investigations of individual-level patterns reveal that these differences are a direct result of contrasting patterns of abundance, average individual mass, and metabolic rates. These results indicate that community energy use is strongly linked to differences in ecology and evolutionary history within and among groups.\",\"PeriodicalId\":37788,\"journal\":{\"name\":\"Frontiers of Biogeography\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Biogeography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21425/f5fbg56553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Biogeography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21425/f5fbg56553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

能量是一种基本的宏观生态属性,因为它支配着所有的生态过程和相互作用。了解社区能源使用的变化及其相关性对于了解社区如何在全球范围内发挥作用至关重要。由于生物体的代谢率等于它的能量流动率,个体的代谢率可以预测群落水平的功能。在这里,计算了来自世界各地的118只蝙蝠、109只鸟类和196只非游动性小型哺乳动物的每日群落能量流率。这些数据是根据样本中416只蝙蝠、1880只鸟类和562种小型哺乳动物的个体代谢率进行放大的。在控制空间自相关的同时,使用顺序回归方法将速率与各种生态、环境、地理和人为变量进行对比和比较,该方法使变量相互正交,从而解决共线性问题。在所有群落中,群落能量利用与群落质量之间存在很强的正相关关系,生物量是群落能量流的主要决定因素。更令人惊讶的是,群体内部和群体之间存在着强烈的生物地理差异。蝙蝠群落为新热带地区提供能量,而小型哺乳动物群落相对于全北极地区的质量具有更高的比率。对个体水平模式的研究表明,这些差异是丰度、平均个体质量和代谢率对比模式的直接结果。这些结果表明,群落能源使用与群体内部和群体之间的生态和进化历史差异密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The macroecology of community energy use in terrestrial vertebrates
Energy is a fundamental macroecological property as it governs all ecological processes and interactions. Understanding variation in community energy use and its correlations is crucial to knowing how communities function across the globe. As an organism’s metabolic rate equates to its rate of energy flow, individual rates can predict community-level functioning. Here, daily rates of community energy flow are calculated for 118 bat, 109 bird, and 196 non-volant small mammal inventories from around the world. These were scaled up from individual metabolic rates that were obtained for the 416 bat, 1880 bird, and 562 small mammal species present in the samples. While controlling for spatial autocorrelation, rates were contrasted and compared to various ecological, environmental, geographic, and anthropogenic variables, using a method of sequential regression that renders the variables orthogonal to each other, thus addressing the issue of collinearity. In all groups, there is a strong positive correlation between community energy use and community mass, with biomass being the primary determinant of community energy flow. More surprisingly, there are strong biogeographic differences within and between groups. Bat communities energy the Neotropics, while small mammal communities have higher rates relative to mass in Holarctic realms. Investigations of individual-level patterns reveal that these differences are a direct result of contrasting patterns of abundance, average individual mass, and metabolic rates. These results indicate that community energy use is strongly linked to differences in ecology and evolutionary history within and among groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Biogeography
Frontiers of Biogeography Environmental Science-Ecology
CiteScore
4.30
自引率
0.00%
发文量
34
审稿时长
6 weeks
期刊介绍: Frontiers of Biogeography is the scientific magazine of the International Biogeography Society (http://www.biogeography.org/). Our scope includes news, original research letters, reviews, opinions and perspectives, news, commentaries, interviews, and articles on how to teach, disseminate and/or apply biogeographical knowledge. We accept papers on the study of the geographical variations of life at all levels of organization, including also studies on temporal and/or evolutionary variations in any component of biodiversity if they have a geographical perspective, as well as studies at relatively small scales if they have a spatially explicit component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信