{"title":"格子玻尔兹曼法模拟太阳能光伏板或电子冷却的小型自然循环回路的热性能研究","authors":"J. Bocanegra, A. Marchitto, M. Misale","doi":"10.2495/eq-v7-n1-1-12","DOIUrl":null,"url":null,"abstract":"The natural circulation loop (NCL) consists of a thermal-hydraulic system that convoys thermal energy from a heat source to a heat sink without a pump. Applications of those loops can be found in solar energy, geothermal, nuclear reactors, and electronic cooling. The lattice Boltzmann method is a numerical method that can simulate thermal-fluid dynamics, using a mesoscopic approach based on the Boltzmann equation for the density function. A square NCL model with fixed temperatures at the heater and heat sink sections was developed in a bi-dimensional lattice with double distribution dynamics, one distribution for the hydrodynamic field and the other for the thermal field. The different cooler–heater configurations (vertical or horizontal) were investigated. We found that by positioning the source or sink vertically, the flow direction can be controlled. In contrast, in a loop with symmetric horizontal heater horizontal cooler configuration where both fluid directions are equally probable. The effectiveness of the loop was studied by calculating the heat sink temperature gradient. The lower value was obtained for the horizontal heater horizontal cooler orientation (0.71) and the higher value for the vertical heater vertical cooler configuration with an increment of 34%; simultaneously, the flow rate (Reynolds number) was reduced by 47%.","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Thermal performance investigation of a mini natural circulation loop for solar PV panel or electronic cooling simulated by lattice Boltzmann method\",\"authors\":\"J. Bocanegra, A. Marchitto, M. Misale\",\"doi\":\"10.2495/eq-v7-n1-1-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The natural circulation loop (NCL) consists of a thermal-hydraulic system that convoys thermal energy from a heat source to a heat sink without a pump. Applications of those loops can be found in solar energy, geothermal, nuclear reactors, and electronic cooling. The lattice Boltzmann method is a numerical method that can simulate thermal-fluid dynamics, using a mesoscopic approach based on the Boltzmann equation for the density function. A square NCL model with fixed temperatures at the heater and heat sink sections was developed in a bi-dimensional lattice with double distribution dynamics, one distribution for the hydrodynamic field and the other for the thermal field. The different cooler–heater configurations (vertical or horizontal) were investigated. We found that by positioning the source or sink vertically, the flow direction can be controlled. In contrast, in a loop with symmetric horizontal heater horizontal cooler configuration where both fluid directions are equally probable. The effectiveness of the loop was studied by calculating the heat sink temperature gradient. The lower value was obtained for the horizontal heater horizontal cooler orientation (0.71) and the higher value for the vertical heater vertical cooler configuration with an increment of 34%; simultaneously, the flow rate (Reynolds number) was reduced by 47%.\",\"PeriodicalId\":52236,\"journal\":{\"name\":\"International Journal of Energy Production and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Production and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/eq-v7-n1-1-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Production and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/eq-v7-n1-1-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Thermal performance investigation of a mini natural circulation loop for solar PV panel or electronic cooling simulated by lattice Boltzmann method
The natural circulation loop (NCL) consists of a thermal-hydraulic system that convoys thermal energy from a heat source to a heat sink without a pump. Applications of those loops can be found in solar energy, geothermal, nuclear reactors, and electronic cooling. The lattice Boltzmann method is a numerical method that can simulate thermal-fluid dynamics, using a mesoscopic approach based on the Boltzmann equation for the density function. A square NCL model with fixed temperatures at the heater and heat sink sections was developed in a bi-dimensional lattice with double distribution dynamics, one distribution for the hydrodynamic field and the other for the thermal field. The different cooler–heater configurations (vertical or horizontal) were investigated. We found that by positioning the source or sink vertically, the flow direction can be controlled. In contrast, in a loop with symmetric horizontal heater horizontal cooler configuration where both fluid directions are equally probable. The effectiveness of the loop was studied by calculating the heat sink temperature gradient. The lower value was obtained for the horizontal heater horizontal cooler orientation (0.71) and the higher value for the vertical heater vertical cooler configuration with an increment of 34%; simultaneously, the flow rate (Reynolds number) was reduced by 47%.