求解Lasso问题的数值算法综述

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
Yujie Zhao, X. Huo
{"title":"求解Lasso问题的数值算法综述","authors":"Yujie Zhao, X. Huo","doi":"10.1002/wics.1602","DOIUrl":null,"url":null,"abstract":"In statistics, the least absolute shrinkage and selection operator (Lasso) is a regression method that performs both variable selection and regularization. There is a lot of literature available, discussing the statistical properties of the regression coefficients estimated by the Lasso method. However, there lacks a comprehensive review discussing the algorithms to solve the optimization problem in Lasso. In this review, we summarize five representative algorithms to optimize the objective function in Lasso, including iterative shrinkage threshold algorithm (ISTA), fast iterative shrinkage‐thresholding algorithms (FISTA), coordinate gradient descent algorithm (CGDA), smooth L1 algorithm (SLA), and path following algorithm (PFA). Additionally, we also compare their convergence rate, as well as their potential strengths and weakness.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A survey of numerical algorithms that can solve the Lasso problems\",\"authors\":\"Yujie Zhao, X. Huo\",\"doi\":\"10.1002/wics.1602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In statistics, the least absolute shrinkage and selection operator (Lasso) is a regression method that performs both variable selection and regularization. There is a lot of literature available, discussing the statistical properties of the regression coefficients estimated by the Lasso method. However, there lacks a comprehensive review discussing the algorithms to solve the optimization problem in Lasso. In this review, we summarize five representative algorithms to optimize the objective function in Lasso, including iterative shrinkage threshold algorithm (ISTA), fast iterative shrinkage‐thresholding algorithms (FISTA), coordinate gradient descent algorithm (CGDA), smooth L1 algorithm (SLA), and path following algorithm (PFA). Additionally, we also compare their convergence rate, as well as their potential strengths and weakness.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1602\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1602","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

在统计学中,最小绝对收缩和选择算子(Lasso)是一种同时执行变量选择和正则化的回归方法。有很多文献讨论了拉索方法估计的回归系数的统计特性。然而,对Lasso中解决优化问题的算法缺乏全面的综述。在这篇综述中,我们总结了五种有代表性的Lasso目标函数优化算法,包括迭代收缩阈值算法(ISTA)、快速迭代收缩阈值法(FISTA)、坐标梯度下降算法(CGDA)、平滑L1算法(SLA)和路径跟随算法(PFA)。此外,我们还比较了它们的收敛速度,以及它们潜在的优势和劣势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey of numerical algorithms that can solve the Lasso problems
In statistics, the least absolute shrinkage and selection operator (Lasso) is a regression method that performs both variable selection and regularization. There is a lot of literature available, discussing the statistical properties of the regression coefficients estimated by the Lasso method. However, there lacks a comprehensive review discussing the algorithms to solve the optimization problem in Lasso. In this review, we summarize five representative algorithms to optimize the objective function in Lasso, including iterative shrinkage threshold algorithm (ISTA), fast iterative shrinkage‐thresholding algorithms (FISTA), coordinate gradient descent algorithm (CGDA), smooth L1 algorithm (SLA), and path following algorithm (PFA). Additionally, we also compare their convergence rate, as well as their potential strengths and weakness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信