基于数字孪生的车辆排避碰撞协同轨迹规划

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS
Hao Du , Supeng Leng , Jianhua He , Kai Xiong , Longyu Zhou
{"title":"基于数字孪生的车辆排避碰撞协同轨迹规划","authors":"Hao Du ,&nbsp;Supeng Leng ,&nbsp;Jianhua He ,&nbsp;Kai Xiong ,&nbsp;Longyu Zhou","doi":"10.1016/j.dcan.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>Road obstacles that unexpectedly appear due to vehicle breakdowns and accidents are major causes of fatal road accidents. Connected Autonomous Vehicles (CAVs) can be used to avoid collisions to ensure road safety through cooperative sensing and driving. However, the collision avoidance performance of CAVs with unexpected obstacles has not been studied in the existing works. In this paper, we first design a platoon-based collision avoidance framework for CAVs. In this framework, we deploy a Digital Twin (DT) system at the head vehicle in a platoon to reduce communication overhead and decision-making delay based on a proposed trajectory planning scheme. In addition, a DT-assistant system is deployed on the assistant vehicle to monitor vehicles out of the sensing range of the head vehicle for the maintenance of the DT system. In this case, the transmission frequency of kinetic states of platoon members can be reduced to ensure low-overhead communication. Moreover, we design a variable resource reservation interval that can ensure DT synchronization between DT and the assistant system with high reliability. To further improve road safety, an urgency level-based trajectory planning algorithm is proposed to avoid unexpected obstacles considering different levels of emergency risks. Simulation results show that our DT system-based scheme can achieve significant performance gains in unexpected obstacle avoidance. Compared to the existing schemes, it can reduce collisions by 95% and is faster by about 10% passing by the unexpected obstacle.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1666-1676"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital twin empowered cooperative trajectory planning of platoon vehicles for collision avoidance with unexpected obstacles\",\"authors\":\"Hao Du ,&nbsp;Supeng Leng ,&nbsp;Jianhua He ,&nbsp;Kai Xiong ,&nbsp;Longyu Zhou\",\"doi\":\"10.1016/j.dcan.2023.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Road obstacles that unexpectedly appear due to vehicle breakdowns and accidents are major causes of fatal road accidents. Connected Autonomous Vehicles (CAVs) can be used to avoid collisions to ensure road safety through cooperative sensing and driving. However, the collision avoidance performance of CAVs with unexpected obstacles has not been studied in the existing works. In this paper, we first design a platoon-based collision avoidance framework for CAVs. In this framework, we deploy a Digital Twin (DT) system at the head vehicle in a platoon to reduce communication overhead and decision-making delay based on a proposed trajectory planning scheme. In addition, a DT-assistant system is deployed on the assistant vehicle to monitor vehicles out of the sensing range of the head vehicle for the maintenance of the DT system. In this case, the transmission frequency of kinetic states of platoon members can be reduced to ensure low-overhead communication. Moreover, we design a variable resource reservation interval that can ensure DT synchronization between DT and the assistant system with high reliability. To further improve road safety, an urgency level-based trajectory planning algorithm is proposed to avoid unexpected obstacles considering different levels of emergency risks. Simulation results show that our DT system-based scheme can achieve significant performance gains in unexpected obstacle avoidance. Compared to the existing schemes, it can reduce collisions by 95% and is faster by about 10% passing by the unexpected obstacle.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"10 6\",\"pages\":\"Pages 1666-1676\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001050\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001050","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital twin empowered cooperative trajectory planning of platoon vehicles for collision avoidance with unexpected obstacles
Road obstacles that unexpectedly appear due to vehicle breakdowns and accidents are major causes of fatal road accidents. Connected Autonomous Vehicles (CAVs) can be used to avoid collisions to ensure road safety through cooperative sensing and driving. However, the collision avoidance performance of CAVs with unexpected obstacles has not been studied in the existing works. In this paper, we first design a platoon-based collision avoidance framework for CAVs. In this framework, we deploy a Digital Twin (DT) system at the head vehicle in a platoon to reduce communication overhead and decision-making delay based on a proposed trajectory planning scheme. In addition, a DT-assistant system is deployed on the assistant vehicle to monitor vehicles out of the sensing range of the head vehicle for the maintenance of the DT system. In this case, the transmission frequency of kinetic states of platoon members can be reduced to ensure low-overhead communication. Moreover, we design a variable resource reservation interval that can ensure DT synchronization between DT and the assistant system with high reliability. To further improve road safety, an urgency level-based trajectory planning algorithm is proposed to avoid unexpected obstacles considering different levels of emergency risks. Simulation results show that our DT system-based scheme can achieve significant performance gains in unexpected obstacle avoidance. Compared to the existing schemes, it can reduce collisions by 95% and is faster by about 10% passing by the unexpected obstacle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信