Connor M. Wood, Stefan Kahl, Stephanie Barnes, Rachel Van Horne, C. Brown
{"title":"被动声学调查和BirdNET算法揭示了两名无音者发声活动的详细时空变化","authors":"Connor M. Wood, Stefan Kahl, Stephanie Barnes, Rachel Van Horne, C. Brown","doi":"10.1080/09524622.2023.2211544","DOIUrl":null,"url":null,"abstract":"ABSTRACT Passive acoustic monitoring has proven effective for broad-scale population surveys of acoustically active species, making it a valuable tool for conserving threatened species. However, successful automated classification of anuran vocalisations in large audio datasets has been limited. We deployed five autonomous recording units at three known breeding areas of the Yosemite toad (Anaxyrus canorus), which is threatened and relatively uncommon, and the sympatric Pacific chorus frog (Pseudacris regilla), which is widespread and more common, to test the viability of bioacoustics as a means of supplementing ongoing, human survey efforts. We analysed the audio data with the BirdNET algorithm, which was originally developed for birds but has been expanded to include both species. We achieved efficient and accurate identification of both species in 2,756 h of audio, which yielded high-resolution phenological data about seasonal and daily vocal activity as well as daily detection counts. These findings demonstrate that a newly expanded machine learning detector, BirdNET, can effectively process passive acoustic surveys for these species. Further exploration of how passive acoustic monitoring may complement existing survey techniques for these and other Anurans is warranted.","PeriodicalId":55385,"journal":{"name":"Bioacoustics-The International Journal of Animal Sound and Its Recording","volume":"32 1","pages":"532 - 543"},"PeriodicalIF":1.5000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Passive acoustic surveys and the BirdNET algorithm reveal detailed spatiotemporal variation in the vocal activity of two anurans\",\"authors\":\"Connor M. Wood, Stefan Kahl, Stephanie Barnes, Rachel Van Horne, C. Brown\",\"doi\":\"10.1080/09524622.2023.2211544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Passive acoustic monitoring has proven effective for broad-scale population surveys of acoustically active species, making it a valuable tool for conserving threatened species. However, successful automated classification of anuran vocalisations in large audio datasets has been limited. We deployed five autonomous recording units at three known breeding areas of the Yosemite toad (Anaxyrus canorus), which is threatened and relatively uncommon, and the sympatric Pacific chorus frog (Pseudacris regilla), which is widespread and more common, to test the viability of bioacoustics as a means of supplementing ongoing, human survey efforts. We analysed the audio data with the BirdNET algorithm, which was originally developed for birds but has been expanded to include both species. We achieved efficient and accurate identification of both species in 2,756 h of audio, which yielded high-resolution phenological data about seasonal and daily vocal activity as well as daily detection counts. These findings demonstrate that a newly expanded machine learning detector, BirdNET, can effectively process passive acoustic surveys for these species. Further exploration of how passive acoustic monitoring may complement existing survey techniques for these and other Anurans is warranted.\",\"PeriodicalId\":55385,\"journal\":{\"name\":\"Bioacoustics-The International Journal of Animal Sound and Its Recording\",\"volume\":\"32 1\",\"pages\":\"532 - 543\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioacoustics-The International Journal of Animal Sound and Its Recording\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/09524622.2023.2211544\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioacoustics-The International Journal of Animal Sound and Its Recording","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09524622.2023.2211544","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Passive acoustic surveys and the BirdNET algorithm reveal detailed spatiotemporal variation in the vocal activity of two anurans
ABSTRACT Passive acoustic monitoring has proven effective for broad-scale population surveys of acoustically active species, making it a valuable tool for conserving threatened species. However, successful automated classification of anuran vocalisations in large audio datasets has been limited. We deployed five autonomous recording units at three known breeding areas of the Yosemite toad (Anaxyrus canorus), which is threatened and relatively uncommon, and the sympatric Pacific chorus frog (Pseudacris regilla), which is widespread and more common, to test the viability of bioacoustics as a means of supplementing ongoing, human survey efforts. We analysed the audio data with the BirdNET algorithm, which was originally developed for birds but has been expanded to include both species. We achieved efficient and accurate identification of both species in 2,756 h of audio, which yielded high-resolution phenological data about seasonal and daily vocal activity as well as daily detection counts. These findings demonstrate that a newly expanded machine learning detector, BirdNET, can effectively process passive acoustic surveys for these species. Further exploration of how passive acoustic monitoring may complement existing survey techniques for these and other Anurans is warranted.
期刊介绍:
Bioacoustics primarily publishes high-quality original research papers and reviews on sound communication in birds, mammals, amphibians, reptiles, fish, insects and other invertebrates, including the following topics :
-Communication and related behaviour-
Sound production-
Hearing-
Ontogeny and learning-
Bioacoustics in taxonomy and systematics-
Impacts of noise-
Bioacoustics in environmental monitoring-
Identification techniques and applications-
Recording and analysis-
Equipment and techniques-
Ultrasound and infrasound-
Underwater sound-
Bioacoustical sound structures, patterns, variation and repertoires