利用纹理特征和中K近邻对未成熟和成熟咖啡豆进行分类

Edwin R. Arboleda
{"title":"利用纹理特征和中K近邻对未成熟和成熟咖啡豆进行分类","authors":"Edwin R. Arboleda","doi":"10.37965/jait.2023.0203","DOIUrl":null,"url":null,"abstract":"In  this  study , texture features  namely entropy,  contrast, energy and   homogeneity were  extracted  from  mature and  immature coffee  beans using  image  processing  and  the  values  were inputted  to MATLAB’s Classification Learner  App for  discrimination. Among  the  23 machine  learning  algorithms  the  best  performance  was  achieved  by  medium  K  nearest  neighbor   which  has 97 %  accuracy  and 0.14574 seconds  in speed.  When compared to previous studies that used RGB and HSV color features to differentiate mature and immature coffee beans, it can be concluded that texture features are far superior in distinguishing the two coffee bean groups.","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Immature and Mature Coffee Beans Using Texture Features and Medium K Nearest Neighbor\",\"authors\":\"Edwin R. Arboleda\",\"doi\":\"10.37965/jait.2023.0203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In  this  study , texture features  namely entropy,  contrast, energy and   homogeneity were  extracted  from  mature and  immature coffee  beans using  image  processing  and  the  values  were inputted  to MATLAB’s Classification Learner  App for  discrimination. Among  the  23 machine  learning  algorithms  the  best  performance  was  achieved  by  medium  K  nearest  neighbor   which  has 97 %  accuracy  and 0.14574 seconds  in speed.  When compared to previous studies that used RGB and HSV color features to differentiate mature and immature coffee beans, it can be concluded that texture features are far superior in distinguishing the two coffee bean groups.\",\"PeriodicalId\":70996,\"journal\":{\"name\":\"人工智能技术学报(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"人工智能技术学报(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.37965/jait.2023.0203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2023.0203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,使用图像处理从成熟和未成熟的咖啡豆中提取纹理特征,即熵、对比度、能量和均匀性,并将这些值输入到MATLAB的Classification Learner应用程序中进行区分。在23种机器学习算法中,中K近邻算法的性能最好,准确率为97%,速度为0.14574秒。与之前使用RGB和HSV颜色特征来区分成熟和未成熟咖啡豆的研究相比,可以得出结论,纹理特征在区分这两类咖啡豆方面要优越得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Immature and Mature Coffee Beans Using Texture Features and Medium K Nearest Neighbor
In  this  study , texture features  namely entropy,  contrast, energy and   homogeneity were  extracted  from  mature and  immature coffee  beans using  image  processing  and  the  values  were inputted  to MATLAB’s Classification Learner  App for  discrimination. Among  the  23 machine  learning  algorithms  the  best  performance  was  achieved  by  medium  K  nearest  neighbor   which  has 97 %  accuracy  and 0.14574 seconds  in speed.  When compared to previous studies that used RGB and HSV color features to differentiate mature and immature coffee beans, it can be concluded that texture features are far superior in distinguishing the two coffee bean groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信