关于非光滑域上具有接触项的泛函的松弛

IF 1.2 2区 数学 Q1 MATHEMATICS
R. Cristoferi, G. Gravina
{"title":"关于非光滑域上具有接触项的泛函的松弛","authors":"R. Cristoferi, G. Gravina","doi":"10.1512/iumj.2023.72.9211","DOIUrl":null,"url":null,"abstract":"We provide the integral representation formula for the relaxation in $BV(o; \\R^M)$ with respect to strong convergence in $L^1(o; \\R^M)$ of a functional with a boundary contact energy term. This characterization is valid for a large class of surface energy densities, and for domains satisfying mild regularity assumptions. Motivated by some classical examples where lower semicontinuity fails, we analyze the extent to which the geometry of the set enters the relaxation procedure.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the relaxation of functionals with contact terms on non-smooth domains\",\"authors\":\"R. Cristoferi, G. Gravina\",\"doi\":\"10.1512/iumj.2023.72.9211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide the integral representation formula for the relaxation in $BV(o; \\\\R^M)$ with respect to strong convergence in $L^1(o; \\\\R^M)$ of a functional with a boundary contact energy term. This characterization is valid for a large class of surface energy densities, and for domains satisfying mild regularity assumptions. Motivated by some classical examples where lower semicontinuity fails, we analyze the extent to which the geometry of the set enters the relaxation procedure.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9211\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9211","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了$BV(0)中的松弛的积分表示公式;\R^M)$关于L^1(o;具有边界接触能项的泛函。这一特性适用于大范围的表面能密度,以及满足温和规则性假设的域。通过一些经典的下半连续性失效的例子,我们分析了集合几何进入松弛过程的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the relaxation of functionals with contact terms on non-smooth domains
We provide the integral representation formula for the relaxation in $BV(o; \R^M)$ with respect to strong convergence in $L^1(o; \R^M)$ of a functional with a boundary contact energy term. This characterization is valid for a large class of surface energy densities, and for domains satisfying mild regularity assumptions. Motivated by some classical examples where lower semicontinuity fails, we analyze the extent to which the geometry of the set enters the relaxation procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信