{"title":"一类七维可解李群的伴表示的可测叶","authors":"V. Le, Tu T. C. Nguyen, T. Nguyen","doi":"10.7546/jgsp-65-2023-41-65","DOIUrl":null,"url":null,"abstract":"We consider connected and simply connected seven-dimensional Lie groups whose Lie algebras have nilradical $\\g_{5,2}$ of Dixmier. First, we give geometric descriptions of the maximal-dimensional orbits in the coadjoint representation of all considered Lie groups. Next, we prove that, for each considered group, the family of the generic coadjoint orbits forms a measurable foliation in the sense of Connes. Finally, the topological classification of all these foliations is also provided.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurable Foliations Associated to the Coadjoint Representation of a Class of Seven-Dimensional Solvable Lie Groups\",\"authors\":\"V. Le, Tu T. C. Nguyen, T. Nguyen\",\"doi\":\"10.7546/jgsp-65-2023-41-65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider connected and simply connected seven-dimensional Lie groups whose Lie algebras have nilradical $\\\\g_{5,2}$ of Dixmier. First, we give geometric descriptions of the maximal-dimensional orbits in the coadjoint representation of all considered Lie groups. Next, we prove that, for each considered group, the family of the generic coadjoint orbits forms a measurable foliation in the sense of Connes. Finally, the topological classification of all these foliations is also provided.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/jgsp-65-2023-41-65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-65-2023-41-65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measurable Foliations Associated to the Coadjoint Representation of a Class of Seven-Dimensional Solvable Lie Groups
We consider connected and simply connected seven-dimensional Lie groups whose Lie algebras have nilradical $\g_{5,2}$ of Dixmier. First, we give geometric descriptions of the maximal-dimensional orbits in the coadjoint representation of all considered Lie groups. Next, we prove that, for each considered group, the family of the generic coadjoint orbits forms a measurable foliation in the sense of Connes. Finally, the topological classification of all these foliations is also provided.