Cartan方法及其在轴上同调中的应用

IF 0.8 4区 数学 Q2 MATHEMATICS
Yuan Liu
{"title":"Cartan方法及其在轴上同调中的应用","authors":"Yuan Liu","doi":"10.1016/j.exmath.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper aims to use Cartan’s original method in proving Theorems A and B on closed cubes to provide a different proof of the vanishing of sheaf cohomology over a closed cube if either (i) the degree exceeds its real dimension or (ii) the sheaf is (locally) constant and the degree is positive. In the first case, we can further use Godement’s argument to show the </span>topological dimension<span> of a paracompact topological manifold is less than or equal to its real dimension.</span></p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cartan’s method and its applications in sheaf cohomology\",\"authors\":\"Yuan Liu\",\"doi\":\"10.1016/j.exmath.2023.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper aims to use Cartan’s original method in proving Theorems A and B on closed cubes to provide a different proof of the vanishing of sheaf cohomology over a closed cube if either (i) the degree exceeds its real dimension or (ii) the sheaf is (locally) constant and the degree is positive. In the first case, we can further use Godement’s argument to show the </span>topological dimension<span> of a paracompact topological manifold is less than or equal to its real dimension.</span></p></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086923000026\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086923000026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在利用Cartan的原始方法证明闭立方体上的定理A和B,如果(i)次超过其实维数,或者(ii)sheaf是(局部)常数并且次为正,则提供闭立方体上sheaf上同调消失的不同证明。在第一种情况下,我们可以进一步使用Godement的论点来证明准紧拓扑流形的拓扑维数小于或等于其实维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cartan’s method and its applications in sheaf cohomology

This paper aims to use Cartan’s original method in proving Theorems A and B on closed cubes to provide a different proof of the vanishing of sheaf cohomology over a closed cube if either (i) the degree exceeds its real dimension or (ii) the sheaf is (locally) constant and the degree is positive. In the first case, we can further use Godement’s argument to show the topological dimension of a paracompact topological manifold is less than or equal to its real dimension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信