Gyöngy和Krylov的一个收敛定理的量子化

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Konstantinos Dareiotis, M'at'e Gerencs'er, Khoa Le
{"title":"Gyöngy和Krylov的一个收敛定理的量子化","authors":"Konstantinos Dareiotis, M'at'e Gerencs'er, Khoa Le","doi":"10.1214/22-aap1867","DOIUrl":null,"url":null,"abstract":"We derive sharp strong convergence rates for the Euler-Maruyama scheme approximating multidimensional SDEs with multiplicative noise without imposing any regularity condition on the drift coefficient. In case the noise is additive, we show that Sobolev regularity can be leveraged to obtain improved rate: drifts with regularity of order $\\alpha \\in (0,1)$ lead to rate $(1+\\alpha)/2$.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Quantifying a convergence theorem of Gyöngy and Krylov\",\"authors\":\"Konstantinos Dareiotis, M'at'e Gerencs'er, Khoa Le\",\"doi\":\"10.1214/22-aap1867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive sharp strong convergence rates for the Euler-Maruyama scheme approximating multidimensional SDEs with multiplicative noise without imposing any regularity condition on the drift coefficient. In case the noise is additive, we show that Sobolev regularity can be leveraged to obtain improved rate: drifts with regularity of order $\\\\alpha \\\\in (0,1)$ lead to rate $(1+\\\\alpha)/2$.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1867\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1867","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 26

摘要

在不给漂移系数施加任何正则性条件的情况下,我们导出了用乘性噪声逼近多维SDE的Euler Maruyama格式的强收敛速度。在噪声是加性的情况下,我们证明了可以利用Sobolev正则性来获得改进的速率:具有$\alpha\In(0,1)$阶正则性的漂移导致速率$(1+\alpha)/2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying a convergence theorem of Gyöngy and Krylov
We derive sharp strong convergence rates for the Euler-Maruyama scheme approximating multidimensional SDEs with multiplicative noise without imposing any regularity condition on the drift coefficient. In case the noise is additive, we show that Sobolev regularity can be leveraged to obtain improved rate: drifts with regularity of order $\alpha \in (0,1)$ lead to rate $(1+\alpha)/2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信