具有圆柱形端点空间的Roe代数的一个变体及其在相对高指标理论中的应用

IF 0.7 2区 数学 Q2 MATHEMATICS
Mehran Seyedhosseini
{"title":"具有圆柱形端点空间的Roe代数的一个变体及其在相对高指标理论中的应用","authors":"Mehran Seyedhosseini","doi":"10.4171/jncg/457","DOIUrl":null,"url":null,"abstract":"In this paper we define a variant of Roe algebras for spaces with cylindrical ends and use this to study questions regarding existence and classification of metrics of positive scalar curvature on such manifolds which are collared on the cylindrical end. We discuss how our constructions are related to relative higher index theory as developed by Chang, Weinberger, and Yu and use this relationship to define higher rho-invariants for positive scalar curvature metrics on manifolds with boundary. This paves the way for classification of these metrics. Finally, we use the machinery developed here to give a concise proof of a result of Schick and the author, which relates the relative higher index with indices defined in the presence of positive scalar curvature on the boundary.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A variant of Roe algebras for spaces with cylindrical ends with applications in relative higher index theory\",\"authors\":\"Mehran Seyedhosseini\",\"doi\":\"10.4171/jncg/457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we define a variant of Roe algebras for spaces with cylindrical ends and use this to study questions regarding existence and classification of metrics of positive scalar curvature on such manifolds which are collared on the cylindrical end. We discuss how our constructions are related to relative higher index theory as developed by Chang, Weinberger, and Yu and use this relationship to define higher rho-invariants for positive scalar curvature metrics on manifolds with boundary. This paves the way for classification of these metrics. Finally, we use the machinery developed here to give a concise proof of a result of Schick and the author, which relates the relative higher index with indices defined in the presence of positive scalar curvature on the boundary.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/457\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/457","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文定义了具有圆柱形端部空间的一类Roe代数,并利用它研究了柱形端部的流形上正标量曲率度量的存在性和分类问题。我们讨论了我们的构造是如何与Chang, Weinberger和Yu提出的相对高指标理论相关联的,并使用这种关系来定义具有边界的流形上的正标量曲率度量的高不变量。这为这些指标的分类铺平了道路。最后,我们利用本文发展的机制,简明地证明了Schick和作者的一个结果,该结果将相对高指标与边界上存在正标量曲率时定义的指标联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variant of Roe algebras for spaces with cylindrical ends with applications in relative higher index theory
In this paper we define a variant of Roe algebras for spaces with cylindrical ends and use this to study questions regarding existence and classification of metrics of positive scalar curvature on such manifolds which are collared on the cylindrical end. We discuss how our constructions are related to relative higher index theory as developed by Chang, Weinberger, and Yu and use this relationship to define higher rho-invariants for positive scalar curvature metrics on manifolds with boundary. This paves the way for classification of these metrics. Finally, we use the machinery developed here to give a concise proof of a result of Schick and the author, which relates the relative higher index with indices defined in the presence of positive scalar curvature on the boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信