{"title":"反卷积鲁棒推理","authors":"Kengo Kato, Yuya Sasaki, T. Ura","doi":"10.3982/QE1643","DOIUrl":null,"url":null,"abstract":"Kotlarski's identity has been widely used in applied economic research based on repeated‐measurement or panel models with latent variables. However, how to conduct inference for these models has been an open question for two decades. This paper addresses this open problem by constructing a novel confidence band for the density function of a latent variable in repeated measurement error model. The confidence band builds on our finding that we can rewrite Kotlarski's identity as a system of linear moment restrictions. Our approach is robust in that we do not require the completeness. The confidence band controls the asymptotic size uniformly over a class of data generating processes, and it is consistent against all fixed alternatives. Simulation studies support our theoretical results. \n \nDeconvolution measurement error robust inference uniform confidence band C14 C57","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":"12 1","pages":"109-142"},"PeriodicalIF":1.9000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust inference in deconvolution\",\"authors\":\"Kengo Kato, Yuya Sasaki, T. Ura\",\"doi\":\"10.3982/QE1643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kotlarski's identity has been widely used in applied economic research based on repeated‐measurement or panel models with latent variables. However, how to conduct inference for these models has been an open question for two decades. This paper addresses this open problem by constructing a novel confidence band for the density function of a latent variable in repeated measurement error model. The confidence band builds on our finding that we can rewrite Kotlarski's identity as a system of linear moment restrictions. Our approach is robust in that we do not require the completeness. The confidence band controls the asymptotic size uniformly over a class of data generating processes, and it is consistent against all fixed alternatives. Simulation studies support our theoretical results. \\n \\nDeconvolution measurement error robust inference uniform confidence band C14 C57\",\"PeriodicalId\":46811,\"journal\":{\"name\":\"Quantitative Economics\",\"volume\":\"12 1\",\"pages\":\"109-142\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.3982/QE1643\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.3982/QE1643","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Kotlarski's identity has been widely used in applied economic research based on repeated‐measurement or panel models with latent variables. However, how to conduct inference for these models has been an open question for two decades. This paper addresses this open problem by constructing a novel confidence band for the density function of a latent variable in repeated measurement error model. The confidence band builds on our finding that we can rewrite Kotlarski's identity as a system of linear moment restrictions. Our approach is robust in that we do not require the completeness. The confidence band controls the asymptotic size uniformly over a class of data generating processes, and it is consistent against all fixed alternatives. Simulation studies support our theoretical results.
Deconvolution measurement error robust inference uniform confidence band C14 C57