{"title":"随机乘法系数Dirichlet多项式的极值界","authors":"Jacques Benatar, Alon Nishry","doi":"10.4064/sm220829-6-3","DOIUrl":null,"url":null,"abstract":"For $X(n)$ a Steinhaus random multiplicative function, we study the maximal size of the random Dirichlet polynomial $$ D_N(t) = \\frac1{\\sqrt{N}} \\sum_{n \\leq N} X(n) n^{it}, $$ with $t$ in various ranges. In particular, for fixed $C>0$ and any small $\\varepsilon>0$ we show that, with high probability, $$ \\exp( (\\log N)^{1/2-\\varepsilon} ) \\ll \\sup_{|t| \\leq N^C} |D_N(t)| \\ll \\exp( (\\log N)^{1/2+\\varepsilon}). $$","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extremal bounds for Dirichlet polynomials with random multiplicative coefficients\",\"authors\":\"Jacques Benatar, Alon Nishry\",\"doi\":\"10.4064/sm220829-6-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $X(n)$ a Steinhaus random multiplicative function, we study the maximal size of the random Dirichlet polynomial $$ D_N(t) = \\\\frac1{\\\\sqrt{N}} \\\\sum_{n \\\\leq N} X(n) n^{it}, $$ with $t$ in various ranges. In particular, for fixed $C>0$ and any small $\\\\varepsilon>0$ we show that, with high probability, $$ \\\\exp( (\\\\log N)^{1/2-\\\\varepsilon} ) \\\\ll \\\\sup_{|t| \\\\leq N^C} |D_N(t)| \\\\ll \\\\exp( (\\\\log N)^{1/2+\\\\varepsilon}). $$\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm220829-6-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm220829-6-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Extremal bounds for Dirichlet polynomials with random multiplicative coefficients
For $X(n)$ a Steinhaus random multiplicative function, we study the maximal size of the random Dirichlet polynomial $$ D_N(t) = \frac1{\sqrt{N}} \sum_{n \leq N} X(n) n^{it}, $$ with $t$ in various ranges. In particular, for fixed $C>0$ and any small $\varepsilon>0$ we show that, with high probability, $$ \exp( (\log N)^{1/2-\varepsilon} ) \ll \sup_{|t| \leq N^C} |D_N(t)| \ll \exp( (\log N)^{1/2+\varepsilon}). $$
期刊介绍:
The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.