各向异性弹性材料中反裂纹尖端附近的渐近场

IF 0.8
Xu Wang;Peter Schiavone
{"title":"各向异性弹性材料中反裂纹尖端附近的渐近场","authors":"Xu Wang;Peter Schiavone","doi":"10.1093/qjmam/hbaa001","DOIUrl":null,"url":null,"abstract":"We use the sextic Stroh formalism to study the asymptotic elastic field near the tip of a debonded anticrack in a generally anisotropic elastic material under generalised plane strain deformations. The stresses near the tip of the debonded anticrack exhibit the oscillatory singularities \n<tex>$r^{-3/4\\pm i\\varepsilon }$</tex>\n and \n<tex>$r^{-1/4\\pm i\\varepsilon }$</tex>\n (where \n<tex>$\\varepsilon $</tex>\n is the oscillatory index) as well as the real power-type singularities \n<tex>$r^{-3/4}$</tex>\n and \n<tex>$r^{-1/4}$</tex>\n. Two complex-valued stress intensity factors and two real-valued stress intensity factors are introduced to respectively scale the two oscillatory and two real power-type singularities. The corresponding three-dimensional analytic vector function is derived explicitly, and the material force on the debonded anticrack is obtained. Our solution is illustrated using an example involving orthotropic materials.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"73 1","pages":"76-83"},"PeriodicalIF":0.8000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbaa001","citationCount":"1","resultStr":"{\"title\":\"Asymptotic Field Near the Tip of a Debonded Anticrack in an Anisotropic Elastic Material\",\"authors\":\"Xu Wang;Peter Schiavone\",\"doi\":\"10.1093/qjmam/hbaa001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the sextic Stroh formalism to study the asymptotic elastic field near the tip of a debonded anticrack in a generally anisotropic elastic material under generalised plane strain deformations. The stresses near the tip of the debonded anticrack exhibit the oscillatory singularities \\n<tex>$r^{-3/4\\\\pm i\\\\varepsilon }$</tex>\\n and \\n<tex>$r^{-1/4\\\\pm i\\\\varepsilon }$</tex>\\n (where \\n<tex>$\\\\varepsilon $</tex>\\n is the oscillatory index) as well as the real power-type singularities \\n<tex>$r^{-3/4}$</tex>\\n and \\n<tex>$r^{-1/4}$</tex>\\n. Two complex-valued stress intensity factors and two real-valued stress intensity factors are introduced to respectively scale the two oscillatory and two real power-type singularities. The corresponding three-dimensional analytic vector function is derived explicitly, and the material force on the debonded anticrack is obtained. Our solution is illustrated using an example involving orthotropic materials.\",\"PeriodicalId\":92460,\"journal\":{\"name\":\"The quarterly journal of mechanics and applied mathematics\",\"volume\":\"73 1\",\"pages\":\"76-83\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qjmam/hbaa001\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quarterly journal of mechanics and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9108408/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9108408/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们使用六次Stroh形式来研究在广义平面应变变形下,一般各向异性弹性材料中脱粘反裂纹尖端附近的渐近弹性场。脱粘反裂纹尖端附近的应力表现出振荡奇点$r^{-3/4\pm i\varepsilon}$和$r^{-1/4\pm i\ varepsilon}$(其中$\varepsilion$是振荡指数),以及实功率型奇点$r^{-3/4}$和$r ^{-1/4}$。引入两个复值应力强度因子和两个实值应力密度因子,分别对两个振荡型和两个实幂型奇异点进行标度。明确推导了相应的三维解析矢量函数,得到了脱粘反裂纹上的材料力。我们的解决方案是通过一个涉及正交各向异性材料的例子来说明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Field Near the Tip of a Debonded Anticrack in an Anisotropic Elastic Material
We use the sextic Stroh formalism to study the asymptotic elastic field near the tip of a debonded anticrack in a generally anisotropic elastic material under generalised plane strain deformations. The stresses near the tip of the debonded anticrack exhibit the oscillatory singularities $r^{-3/4\pm i\varepsilon }$ and $r^{-1/4\pm i\varepsilon }$ (where $\varepsilon $ is the oscillatory index) as well as the real power-type singularities $r^{-3/4}$ and $r^{-1/4}$ . Two complex-valued stress intensity factors and two real-valued stress intensity factors are introduced to respectively scale the two oscillatory and two real power-type singularities. The corresponding three-dimensional analytic vector function is derived explicitly, and the material force on the debonded anticrack is obtained. Our solution is illustrated using an example involving orthotropic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信