双曲流形自连接方向极限集的Hausdorff维数

IF 0.7 1区 数学 Q2 MATHEMATICS
Dongryul Kim, Y. Minsky, H. Oh
{"title":"双曲流形自连接方向极限集的Hausdorff维数","authors":"Dongryul Kim, Y. Minsky, H. Oh","doi":"10.3934/jmd.2023013","DOIUrl":null,"url":null,"abstract":"The classical result of Patterson and Sullivan says that for a non-elementary convex cocompact subgroup $\\Gamma<\\text{SO}^\\circ (n,1)$, $n\\ge 2$, the Hausdorff dimension of the limit set of $\\Gamma$ is equal to the critical exponent of $\\Gamma$. In this paper, we generalize this result for self-joinings of convex cocompact groups in two ways. Let $\\Delta$ be a finitely generated group and $\\rho_i:\\Delta\\to \\text{SO}^\\circ(n_i,1)$ be a convex cocompact faithful representation of $\\Delta$ for $1\\le i\\le k$. Associated to $\\rho=(\\rho_1, \\cdots, \\rho_k)$, we consider the following self-joining subgroup of $\\prod_{i=1}^k \\text{SO}(n_i,1)$: $$\\Gamma=\\left(\\prod_{i=1}^k\\rho_i\\right)(\\Delta)=\\{(\\rho_1(g), \\cdots, \\rho_k(g)):g\\in \\Delta\\} .$$ (1). Denoting by $\\Lambda\\subset \\prod_{i=1}^k \\mathbb{S}^{n_i-1}$ the limit set of $\\Gamma$, we first prove that $$\\text{dim}_H \\Lambda=\\max_{1\\le i\\le k} \\delta_{\\rho_i}$$ where $\\delta_{\\rho_i}$ is the critical exponent of the subgroup $\\rho_{i}(\\Delta)$. (2). Denoting by $\\Lambda_u\\subset \\Lambda$ the $u$-directional limit set for each $u=(u_1, \\cdots, u_k)$ in the interior of the limit cone of $\\Gamma$, we obtain that for $k\\le 3$, $$ \\frac{\\psi_\\Gamma(u)}{\\max_i u_i }\\le \\text{dim}_H \\Lambda_u \\le \\frac{\\psi_\\Gamma(u)}{\\min_i u_i }$$ where $\\psi_\\Gamma:\\mathbb{R}^k\\to \\mathbb{R}\\cup\\{-\\infty\\}$ is the growth indicator function of $\\Gamma$.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Hausdorff dimension of directional limit sets for self-joinings of hyperbolic manifolds\",\"authors\":\"Dongryul Kim, Y. Minsky, H. Oh\",\"doi\":\"10.3934/jmd.2023013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical result of Patterson and Sullivan says that for a non-elementary convex cocompact subgroup $\\\\Gamma<\\\\text{SO}^\\\\circ (n,1)$, $n\\\\ge 2$, the Hausdorff dimension of the limit set of $\\\\Gamma$ is equal to the critical exponent of $\\\\Gamma$. In this paper, we generalize this result for self-joinings of convex cocompact groups in two ways. Let $\\\\Delta$ be a finitely generated group and $\\\\rho_i:\\\\Delta\\\\to \\\\text{SO}^\\\\circ(n_i,1)$ be a convex cocompact faithful representation of $\\\\Delta$ for $1\\\\le i\\\\le k$. Associated to $\\\\rho=(\\\\rho_1, \\\\cdots, \\\\rho_k)$, we consider the following self-joining subgroup of $\\\\prod_{i=1}^k \\\\text{SO}(n_i,1)$: $$\\\\Gamma=\\\\left(\\\\prod_{i=1}^k\\\\rho_i\\\\right)(\\\\Delta)=\\\\{(\\\\rho_1(g), \\\\cdots, \\\\rho_k(g)):g\\\\in \\\\Delta\\\\} .$$ (1). Denoting by $\\\\Lambda\\\\subset \\\\prod_{i=1}^k \\\\mathbb{S}^{n_i-1}$ the limit set of $\\\\Gamma$, we first prove that $$\\\\text{dim}_H \\\\Lambda=\\\\max_{1\\\\le i\\\\le k} \\\\delta_{\\\\rho_i}$$ where $\\\\delta_{\\\\rho_i}$ is the critical exponent of the subgroup $\\\\rho_{i}(\\\\Delta)$. (2). Denoting by $\\\\Lambda_u\\\\subset \\\\Lambda$ the $u$-directional limit set for each $u=(u_1, \\\\cdots, u_k)$ in the interior of the limit cone of $\\\\Gamma$, we obtain that for $k\\\\le 3$, $$ \\\\frac{\\\\psi_\\\\Gamma(u)}{\\\\max_i u_i }\\\\le \\\\text{dim}_H \\\\Lambda_u \\\\le \\\\frac{\\\\psi_\\\\Gamma(u)}{\\\\min_i u_i }$$ where $\\\\psi_\\\\Gamma:\\\\mathbb{R}^k\\\\to \\\\mathbb{R}\\\\cup\\\\{-\\\\infty\\\\}$ is the growth indicator function of $\\\\Gamma$.\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2023013\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2023013","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

Patterson和Sullivan的经典结果表明,对于一个非初等凸共紧子群$\Gamma<\text{SO}^\circ(n,1)$,$n\ge 2$,$\Gamma$的极限集的Hausdorff维数等于$\ Gamma$的临界指数。本文用两种方法推广了凸共紧群自连接的结果。设$\Delta$是有限生成群,$\rho_i:\Delta\to\text{SO}^\circ(n_i,1)$是$\Delta$对$1\le i\le k$的凸共压缩忠实表示。与$\rho=(\rho_1,\cdots,\rho_k(1) 。用$\Lambda\subet\prod_{i=1}^k\mathbb{S}^{n_i-1}$表示$\Gamma$的极限集,我们首先证明了$$\text{dim}_H\Lambda=\max_{1\le i\le k}\delta_{\rho_i}$$其中$\delta_{\rho_i}$是子群$\rho_{i}(\delta)$的临界指数。(2) 。用$\Lambda_u\subet\Lambda$表示$\Gamma$极限锥内部每个$u=(u1,\cdots,u_k)$的$u$方向极限集,我们得到了$k\le3$,$$\frac{\psi_\Gamma(u)}{\max_i u_i}\le\text{dim}_H\Lambda_u\le\frac{\psi_\Gamma(u)}{\min_iu_i}$$其中$\psi_\ Gamma:\mathbb{R}^k\to\mathbb{R{\cup\{-\infty\}$是$\Gamma$的增长指标函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hausdorff dimension of directional limit sets for self-joinings of hyperbolic manifolds
The classical result of Patterson and Sullivan says that for a non-elementary convex cocompact subgroup $\Gamma<\text{SO}^\circ (n,1)$, $n\ge 2$, the Hausdorff dimension of the limit set of $\Gamma$ is equal to the critical exponent of $\Gamma$. In this paper, we generalize this result for self-joinings of convex cocompact groups in two ways. Let $\Delta$ be a finitely generated group and $\rho_i:\Delta\to \text{SO}^\circ(n_i,1)$ be a convex cocompact faithful representation of $\Delta$ for $1\le i\le k$. Associated to $\rho=(\rho_1, \cdots, \rho_k)$, we consider the following self-joining subgroup of $\prod_{i=1}^k \text{SO}(n_i,1)$: $$\Gamma=\left(\prod_{i=1}^k\rho_i\right)(\Delta)=\{(\rho_1(g), \cdots, \rho_k(g)):g\in \Delta\} .$$ (1). Denoting by $\Lambda\subset \prod_{i=1}^k \mathbb{S}^{n_i-1}$ the limit set of $\Gamma$, we first prove that $$\text{dim}_H \Lambda=\max_{1\le i\le k} \delta_{\rho_i}$$ where $\delta_{\rho_i}$ is the critical exponent of the subgroup $\rho_{i}(\Delta)$. (2). Denoting by $\Lambda_u\subset \Lambda$ the $u$-directional limit set for each $u=(u_1, \cdots, u_k)$ in the interior of the limit cone of $\Gamma$, we obtain that for $k\le 3$, $$ \frac{\psi_\Gamma(u)}{\max_i u_i }\le \text{dim}_H \Lambda_u \le \frac{\psi_\Gamma(u)}{\min_i u_i }$$ where $\psi_\Gamma:\mathbb{R}^k\to \mathbb{R}\cup\{-\infty\}$ is the growth indicator function of $\Gamma$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including: Number theory Symplectic geometry Differential geometry Rigidity Quantum chaos Teichmüller theory Geometric group theory Harmonic analysis on manifolds. The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信