{"title":"椭圆算子的一些紧致性结果","authors":"S. Azami, S. H. Fatemi","doi":"10.1080/25742558.2020.1857577","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we get two compactness results for complete manifolds by applying a (sub-) elliptic second-order differential operator on distance functions. The first is an extension of a theorem of Galloway and gets an upper estimate for the diameter of the manifold and the second is an extension of a theorem of Ambrose.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2020.1857577","citationCount":"0","resultStr":"{\"title\":\"Some compactness results by elliptic operators\",\"authors\":\"S. Azami, S. H. Fatemi\",\"doi\":\"10.1080/25742558.2020.1857577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we get two compactness results for complete manifolds by applying a (sub-) elliptic second-order differential operator on distance functions. The first is an extension of a theorem of Galloway and gets an upper estimate for the diameter of the manifold and the second is an extension of a theorem of Ambrose.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2020.1857577\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2020.1857577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2020.1857577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract In this paper, we get two compactness results for complete manifolds by applying a (sub-) elliptic second-order differential operator on distance functions. The first is an extension of a theorem of Galloway and gets an upper estimate for the diameter of the manifold and the second is an extension of a theorem of Ambrose.