椭圆算子的一些紧致性结果

IF 0.1 Q4 MATHEMATICS
S. Azami, S. H. Fatemi
{"title":"椭圆算子的一些紧致性结果","authors":"S. Azami, S. H. Fatemi","doi":"10.1080/25742558.2020.1857577","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we get two compactness results for complete manifolds by applying a (sub-) elliptic second-order differential operator on distance functions. The first is an extension of a theorem of Galloway and gets an upper estimate for the diameter of the manifold and the second is an extension of a theorem of Ambrose.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2020.1857577","citationCount":"0","resultStr":"{\"title\":\"Some compactness results by elliptic operators\",\"authors\":\"S. Azami, S. H. Fatemi\",\"doi\":\"10.1080/25742558.2020.1857577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we get two compactness results for complete manifolds by applying a (sub-) elliptic second-order differential operator on distance functions. The first is an extension of a theorem of Galloway and gets an upper estimate for the diameter of the manifold and the second is an extension of a theorem of Ambrose.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2020.1857577\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2020.1857577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2020.1857577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用(次)椭圆二阶微分算子在距离函数上的作用,得到了完全流形的两个紧致结果。第一个是对加洛韦定理的推广,得到了流形直径的上估计;第二个是对安布罗斯定理的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some compactness results by elliptic operators
Abstract In this paper, we get two compactness results for complete manifolds by applying a (sub-) elliptic second-order differential operator on distance functions. The first is an extension of a theorem of Galloway and gets an upper estimate for the diameter of the manifold and the second is an extension of a theorem of Ambrose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信