一个轨道的连接能有多高?

IF 1.3 2区 数学 Q1 MATHEMATICS
Christian Lange, M. Radeschi
{"title":"一个轨道的连接能有多高?","authors":"Christian Lange, M. Radeschi","doi":"10.4171/rmi/1375","DOIUrl":null,"url":null,"abstract":"On the one hand, we provide the first examples of arbitrarily highly connected (compact) bad orbifolds. On the other hand, we show that n-connected norbifolds are manifolds. The latter improves the best previously known bound of Lytchak by roughly a factor of 2. For compact orbifolds and in most dimensions we prove slightly better bounds. We obtain sharp results up to dimension 5.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How highly connected can an orbifold be?\",\"authors\":\"Christian Lange, M. Radeschi\",\"doi\":\"10.4171/rmi/1375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the one hand, we provide the first examples of arbitrarily highly connected (compact) bad orbifolds. On the other hand, we show that n-connected norbifolds are manifolds. The latter improves the best previously known bound of Lytchak by roughly a factor of 2. For compact orbifolds and in most dimensions we prove slightly better bounds. We obtain sharp results up to dimension 5.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1375\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1375","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

一方面,我们提供了任意高度连通(紧致)坏轨道的第一个例子。另一方面,我们证明了n-连通范数是流形。后者将先前已知的Lytchak的最佳界提高了大约2倍。对于紧致的轨道和大多数维度,我们证明了稍好的边界。我们得到了高达5维的清晰结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How highly connected can an orbifold be?
On the one hand, we provide the first examples of arbitrarily highly connected (compact) bad orbifolds. On the other hand, we show that n-connected norbifolds are manifolds. The latter improves the best previously known bound of Lytchak by roughly a factor of 2. For compact orbifolds and in most dimensions we prove slightly better bounds. We obtain sharp results up to dimension 5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信