简单量子系统绝热不变量的Ehrenfest方法和进入能量发射过程的时间间隔的计算

S. Olszewski
{"title":"简单量子系统绝热不变量的Ehrenfest方法和进入能量发射过程的时间间隔的计算","authors":"S. Olszewski","doi":"10.4236/jqis.2020.101001","DOIUrl":null,"url":null,"abstract":"In the first step, the Ehrenfest reasoning concerning the adiabatic invariance of the angular orbital momentum is applied to the electron motion in the hydrogen atom. It is demonstrated that the time of the energy emission from the quantum level n+1 to level n can be deduced from the orbital angular momentum examined in the hydrogen atom. This time is found precisely equal to the time interval dictated by the Joule-Lenz law governing the electron transition between the levels n+1 and n. In the next step, the mechanical parameters entering the quantum systems are applied in calculating the time intervals characteristic for the electron transitions. This concerns the neighbouring energy levels in the hydrogen atom as well as the Landau levels in the electron gas submitted to the action of a constant magnetic field.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ehrenfest Approach to the Adiabatic Invariants and Calculation of the Intervals of Time Entering the Energy Emission Process in Simple Quantum Systems\",\"authors\":\"S. Olszewski\",\"doi\":\"10.4236/jqis.2020.101001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the first step, the Ehrenfest reasoning concerning the adiabatic invariance of the angular orbital momentum is applied to the electron motion in the hydrogen atom. It is demonstrated that the time of the energy emission from the quantum level n+1 to level n can be deduced from the orbital angular momentum examined in the hydrogen atom. This time is found precisely equal to the time interval dictated by the Joule-Lenz law governing the electron transition between the levels n+1 and n. In the next step, the mechanical parameters entering the quantum systems are applied in calculating the time intervals characteristic for the electron transitions. This concerns the neighbouring energy levels in the hydrogen atom as well as the Landau levels in the electron gas submitted to the action of a constant magnetic field.\",\"PeriodicalId\":58996,\"journal\":{\"name\":\"量子信息科学期刊(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"量子信息科学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/jqis.2020.101001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/jqis.2020.101001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在第一步中,将关于角轨道动量绝热不变性的Ehrenfest推理应用于氢原子中的电子运动。结果表明,从氢原子中的轨道角动量可以推导出从n+1量子能级到n能级的能量发射时间。发现该时间精确地等于由控制n+1和n之间的电子跃迁的焦耳-伦茨定律所规定的时间间隔。在下一步中,在计算电子跃迁的时间间隔特性时应用进入量子系统的机械参数。这涉及到氢原子中的相邻能级以及在恒定磁场作用下电子气中的朗道能级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ehrenfest Approach to the Adiabatic Invariants and Calculation of the Intervals of Time Entering the Energy Emission Process in Simple Quantum Systems
In the first step, the Ehrenfest reasoning concerning the adiabatic invariance of the angular orbital momentum is applied to the electron motion in the hydrogen atom. It is demonstrated that the time of the energy emission from the quantum level n+1 to level n can be deduced from the orbital angular momentum examined in the hydrogen atom. This time is found precisely equal to the time interval dictated by the Joule-Lenz law governing the electron transition between the levels n+1 and n. In the next step, the mechanical parameters entering the quantum systems are applied in calculating the time intervals characteristic for the electron transitions. This concerns the neighbouring energy levels in the hydrogen atom as well as the Landau levels in the electron gas submitted to the action of a constant magnetic field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
108
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信