{"title":"图复形与Feynman规则","authors":"Marko Berghoff, D. Kreimer","doi":"10.4310/CNTP.2023.v17.n1.a4","DOIUrl":null,"url":null,"abstract":"We investigate Feynman graphs and their Feynman rules from the viewpoint of graph complexes. We focus on graph homology and on the appearance of cubical complexes when either reducing internal edges or when removing them by putting them on the massshell.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Graph complexes and Feynman rules\",\"authors\":\"Marko Berghoff, D. Kreimer\",\"doi\":\"10.4310/CNTP.2023.v17.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate Feynman graphs and their Feynman rules from the viewpoint of graph complexes. We focus on graph homology and on the appearance of cubical complexes when either reducing internal edges or when removing them by putting them on the massshell.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2023.v17.n1.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2023.v17.n1.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We investigate Feynman graphs and their Feynman rules from the viewpoint of graph complexes. We focus on graph homology and on the appearance of cubical complexes when either reducing internal edges or when removing them by putting them on the massshell.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.