Harer-Zagier公式的一个交点理论证明

IF 1.2 1区 数学 Q1 MATHEMATICS
A. Giacchetto, Danilo Lewa'nski, P. Norbury
{"title":"Harer-Zagier公式的一个交点理论证明","authors":"A. Giacchetto, Danilo Lewa'nski, P. Norbury","doi":"10.14231/AG-2023-004","DOIUrl":null,"url":null,"abstract":"We provide an intersection-theoretic formula for the Euler characteristic of the moduli space of smooth curves. This formula reads purely in terms of Hodge integrals and, as a corollary, the standard calculus of tautological classes gives a new short proof of the Harer-Zagier formula. Our result is based on the Gauss-Bonnet formula, and on the observation that a certain parametrisation of the $\\Omega$-class - the Chern class of the universal $r$-th root of the twisted log canonical bundle - provides the Chern class of the log tangent bundle to the moduli space of smooth curves. Being $\\Omega$-classes by now employed in many enumerative problems, mostly recently found and at times surprisingly different from each other, we dedicate some work to produce an extensive list of their general properties: extending existing ones, finding new ones, and writing down some only known to the experts.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An intersection-theoretic proof of the Harer–Zagier fomula\",\"authors\":\"A. Giacchetto, Danilo Lewa'nski, P. Norbury\",\"doi\":\"10.14231/AG-2023-004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide an intersection-theoretic formula for the Euler characteristic of the moduli space of smooth curves. This formula reads purely in terms of Hodge integrals and, as a corollary, the standard calculus of tautological classes gives a new short proof of the Harer-Zagier formula. Our result is based on the Gauss-Bonnet formula, and on the observation that a certain parametrisation of the $\\\\Omega$-class - the Chern class of the universal $r$-th root of the twisted log canonical bundle - provides the Chern class of the log tangent bundle to the moduli space of smooth curves. Being $\\\\Omega$-classes by now employed in many enumerative problems, mostly recently found and at times surprisingly different from each other, we dedicate some work to produce an extensive list of their general properties: extending existing ones, finding new ones, and writing down some only known to the experts.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2023-004\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2023-004","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

给出了光滑曲线模空间的欧拉特性的一个交点理论公式。这个公式纯粹是用Hodge积分来表示的,作为一个推论,重言类的标准演算给出了Harer-Zagier公式的一个新的简短证明。我们的结果是基于高斯-博内公式,并观察到$\Omega$-类的某种参数化-扭曲对数正则束的泛$r$根的Chern类-为光滑曲线的模空间提供了log正切束的Chern类。由于$\Omega$-类现在被用于许多列举性问题,大多数是最近发现的,有时彼此之间的差异令人惊讶,我们花了一些工作来产生它们的一般性质的广泛列表:扩展现有的属性,寻找新的属性,并写下一些只有专家知道的属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intersection-theoretic proof of the Harer–Zagier fomula
We provide an intersection-theoretic formula for the Euler characteristic of the moduli space of smooth curves. This formula reads purely in terms of Hodge integrals and, as a corollary, the standard calculus of tautological classes gives a new short proof of the Harer-Zagier formula. Our result is based on the Gauss-Bonnet formula, and on the observation that a certain parametrisation of the $\Omega$-class - the Chern class of the universal $r$-th root of the twisted log canonical bundle - provides the Chern class of the log tangent bundle to the moduli space of smooth curves. Being $\Omega$-classes by now employed in many enumerative problems, mostly recently found and at times surprisingly different from each other, we dedicate some work to produce an extensive list of their general properties: extending existing ones, finding new ones, and writing down some only known to the experts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信