{"title":"Orlicz-Morrey空间上Hardy-Littlewood极大算子和Calderón-Zygmund算子的加权有界性","authors":"Ryota Kawasumi, E. Nakai","doi":"10.7153/mia-2021-24-81","DOIUrl":null,"url":null,"abstract":"For the Hardy-Littlewood maximal and Calder´on-Zygmund operators, the weighted boundedness on the Lebesgue spaces are well known. We extend these to the Orlicz-Morrey spaces. Moreover, we prove the weighted boundedness on the weak Orlicz-Morrey spaces. To do this we show the weak-weak modular inequality. The Orlicz-Morrey space and its weak version contain weighted Orlicz, Morrey and Lebesgue spaces and their weak versions as special cases. Then we also get the boundedness for these function spaces as corollaries.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weighted boundedness of the Hardy-Littlewood maximal and Calderón-Zygmund operators on Orlicz-Morrey and weak Orlicz-Morrey spaces\",\"authors\":\"Ryota Kawasumi, E. Nakai\",\"doi\":\"10.7153/mia-2021-24-81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the Hardy-Littlewood maximal and Calder´on-Zygmund operators, the weighted boundedness on the Lebesgue spaces are well known. We extend these to the Orlicz-Morrey spaces. Moreover, we prove the weighted boundedness on the weak Orlicz-Morrey spaces. To do this we show the weak-weak modular inequality. The Orlicz-Morrey space and its weak version contain weighted Orlicz, Morrey and Lebesgue spaces and their weak versions as special cases. Then we also get the boundedness for these function spaces as corollaries.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/mia-2021-24-81\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2021-24-81","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weighted boundedness of the Hardy-Littlewood maximal and Calderón-Zygmund operators on Orlicz-Morrey and weak Orlicz-Morrey spaces
For the Hardy-Littlewood maximal and Calder´on-Zygmund operators, the weighted boundedness on the Lebesgue spaces are well known. We extend these to the Orlicz-Morrey spaces. Moreover, we prove the weighted boundedness on the weak Orlicz-Morrey spaces. To do this we show the weak-weak modular inequality. The Orlicz-Morrey space and its weak version contain weighted Orlicz, Morrey and Lebesgue spaces and their weak versions as special cases. Then we also get the boundedness for these function spaces as corollaries.
期刊介绍:
''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.