{"title":"细菌鞭毛的工程观点:第一部分-建设性观点","authors":"Waldean A. Schulz","doi":"10.5048/BIO-C.2021.1","DOIUrl":null,"url":null,"abstract":"This study examines the bacterial flagellum from an engineering viewpoint. This examination concentrates on the structure, proteins, control, and assembly of a typical flagellum, which is the organelle imparting motility to common bacteria. Two very different, independent approaches are applied and then compared in three separate papers: Parts 1, 2, and 3. The first approach is a constructive or top-down approach, covered in this Part 1. It considers the purpose of a bacterial motility system, its typical environment, new and existing required resources, and its physiology. It sets forth the logically necessary functional requirements, constraints, assembly, and relationships. The functionality includes a motility control subsystem and provision for self-assembly. The specification of these requirements is intended to be independent from knowledge of the flagellar structures. This is original material not covered in academic papers on the flagellum. Part 2 will cover the second approach, an analytical or bottom-up approach. It will document the known 40+ protein components and the structure, assembly, and control of a typical flagellum. The bacterial flagellum is a well-researched molecular subsystem. However, in Part 2 the assembly relationships will be illustrated graphically in a form and detail not found in previous literature. Part 3 will compare the two approaches and conclude with several original observations. Those include the coherent assembly orchestration and an ontology of the exceedingly specific protein-binding properties. The latter observation is significant, and it suggests future modeling to elucidate how the strong, coherent, multi-way protein binding is achieved at the molecular level.","PeriodicalId":89660,"journal":{"name":"BIO-complexity","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Engineering Perspective on the Bacterial Flagellum: Part 1 - Constructive View\",\"authors\":\"Waldean A. Schulz\",\"doi\":\"10.5048/BIO-C.2021.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the bacterial flagellum from an engineering viewpoint. This examination concentrates on the structure, proteins, control, and assembly of a typical flagellum, which is the organelle imparting motility to common bacteria. Two very different, independent approaches are applied and then compared in three separate papers: Parts 1, 2, and 3. The first approach is a constructive or top-down approach, covered in this Part 1. It considers the purpose of a bacterial motility system, its typical environment, new and existing required resources, and its physiology. It sets forth the logically necessary functional requirements, constraints, assembly, and relationships. The functionality includes a motility control subsystem and provision for self-assembly. The specification of these requirements is intended to be independent from knowledge of the flagellar structures. This is original material not covered in academic papers on the flagellum. Part 2 will cover the second approach, an analytical or bottom-up approach. It will document the known 40+ protein components and the structure, assembly, and control of a typical flagellum. The bacterial flagellum is a well-researched molecular subsystem. However, in Part 2 the assembly relationships will be illustrated graphically in a form and detail not found in previous literature. Part 3 will compare the two approaches and conclude with several original observations. Those include the coherent assembly orchestration and an ontology of the exceedingly specific protein-binding properties. The latter observation is significant, and it suggests future modeling to elucidate how the strong, coherent, multi-way protein binding is achieved at the molecular level.\",\"PeriodicalId\":89660,\"journal\":{\"name\":\"BIO-complexity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIO-complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5048/BIO-C.2021.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIO-complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5048/BIO-C.2021.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Engineering Perspective on the Bacterial Flagellum: Part 1 - Constructive View
This study examines the bacterial flagellum from an engineering viewpoint. This examination concentrates on the structure, proteins, control, and assembly of a typical flagellum, which is the organelle imparting motility to common bacteria. Two very different, independent approaches are applied and then compared in three separate papers: Parts 1, 2, and 3. The first approach is a constructive or top-down approach, covered in this Part 1. It considers the purpose of a bacterial motility system, its typical environment, new and existing required resources, and its physiology. It sets forth the logically necessary functional requirements, constraints, assembly, and relationships. The functionality includes a motility control subsystem and provision for self-assembly. The specification of these requirements is intended to be independent from knowledge of the flagellar structures. This is original material not covered in academic papers on the flagellum. Part 2 will cover the second approach, an analytical or bottom-up approach. It will document the known 40+ protein components and the structure, assembly, and control of a typical flagellum. The bacterial flagellum is a well-researched molecular subsystem. However, in Part 2 the assembly relationships will be illustrated graphically in a form and detail not found in previous literature. Part 3 will compare the two approaches and conclude with several original observations. Those include the coherent assembly orchestration and an ontology of the exceedingly specific protein-binding properties. The latter observation is significant, and it suggests future modeling to elucidate how the strong, coherent, multi-way protein binding is achieved at the molecular level.