一类与无穷符号$\Phi$有关的连续局部复函数——数字表示

Q3 Mathematics
M. Pratsovytyi, O. Baranovskyi, O. Bondarenko, S. Ratushniak
{"title":"一类与无穷符号$\\Phi$有关的连续局部复函数——数字表示","authors":"M. Pratsovytyi, O. Baranovskyi, O. Bondarenko, S. Ratushniak","doi":"10.30970/ms.59.2.123-131","DOIUrl":null,"url":null,"abstract":"In the paper, we introduce and study a massive class of continuous functions defined on the interval $(0;1)$ using a special encoding (representation) of the argument with an alphabet $ \\mathbb{Z}=\\{0,\\pm 1, \\pm 2,...\\}$ and base $\\tau=\\frac{\\sqrt{5}-1}{2}$: $\\displaystyle x=b_{\\alpha_1}+\\sum\\limits_{k=2}^{m}(b_{\\alpha_k}\\prod\\limits_{i=1}^{k-1}\\Theta_{\\alpha_i})\\equiv\\Delta^{\\Phi}_{\\alpha_1\\alpha_2...\\alpha_m(\\emptyset)},\\quadx=b_{\\alpha_1}+\\sum\\limits_{k=2}^{\\infty}(b_{\\alpha_k}\\prod\\limits_{i=1}^{k-1}\\Theta_{\\alpha_i})\\equiv\\Delta^{\\Phi}_{\\alpha_1\\alpha_2...\\alpha_n...},$ \nwhere $\\alpha_n\\in \\mathbb{Z}$, $\\Theta_n=\\Theta_{-n}=\\tau^{3+|n|}$,$b_n=\\sum\\limits_{i=-\\infty}^{n-1}\\Theta_i=\\begin{cases}\\tau^{2-n}, & \\mbox{if } n\\leq0, \\\\1-\\tau^{n+1}, & \\mbox{if } n\\geq 0.\\end{cases}$ \nThe function $f$, which is the main object of the study, is defined by equalities$\\displaystyle\\begin{cases}f(x=\\Delta^{\\Phi}_{i_1...i_k...})=\\sigma_{i_11}+\\sum\\limits_{k=2}^{\\infty}\\sigma_{i_kk}\\prod\\limits_{j=1}^{k-1}p_{i_jj}\\equiv\\Delta_{i_1...i_k...},\\\\f(x=\\Delta^{\\Phi}_{i_1...i_m(\\emptyset)})=\\sigma_{i_11}+\\sum\\limits_{k=2}^{m}\\sigma_{i_kk}\\prod\\limits_{j=1}^{k-1}p_{i_jj}\\equiv\\Delta_{i_1...i_m(\\emptyset)},\\end{cases}$ where an infinite matrix $||p_{ik}||$ ($i\\in \\mathbb{Z}$, $k\\in \\mathbb N$) satisfies the conditions \n1) $|p_{ik}|<1$ $\\forall i\\in \\mathbb{Z}$, $\\forall k\\in \\mathbb N;\\quad$2) $\\sum\\limits_{i\\in \\mathbb{Z}}p_{ik}=1$ $\\forall k\\in\\mathbb N$; \n3) $0<\\sum\\limits_{k=2}^{\\infty}\\prod\\limits_{j=1}^{k-1}p_{i_jj}<\\infty~~\\forall (i_j)\\in L;\\quad$4) $0<\\sigma_{ik}\\equiv\\sum\\limits_{j=-\\infty}^{i-1}p_{jk}<1$ $\\forall i\\in \\mathbb Z, \\forall k\\in \\mathbb N.$ \nThis class of functions contains monotonic, non-monotonic, nowhere monotonic functions and functionswithout monotonicity intervals except for constancy intervals, Cantor-type andquasi-Cantor-type functions as well as functions of bounded and unbounded variation. The criteria for the function $f$ to be monotonic and to be a function of the Cantor type as well as the criterion of nowhere monotonicity are proved. Expressions for the Lebesgue measure of the set of non-constancy of the function and for the variation of the function are found. Necessary and sufficient conditions for thefunction to be of unbounded variation are established.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"One class of continuous locally complicated functions related to infinite-symbol $\\\\Phi$-representation of numbers\",\"authors\":\"M. Pratsovytyi, O. Baranovskyi, O. Bondarenko, S. Ratushniak\",\"doi\":\"10.30970/ms.59.2.123-131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we introduce and study a massive class of continuous functions defined on the interval $(0;1)$ using a special encoding (representation) of the argument with an alphabet $ \\\\mathbb{Z}=\\\\{0,\\\\pm 1, \\\\pm 2,...\\\\}$ and base $\\\\tau=\\\\frac{\\\\sqrt{5}-1}{2}$: $\\\\displaystyle x=b_{\\\\alpha_1}+\\\\sum\\\\limits_{k=2}^{m}(b_{\\\\alpha_k}\\\\prod\\\\limits_{i=1}^{k-1}\\\\Theta_{\\\\alpha_i})\\\\equiv\\\\Delta^{\\\\Phi}_{\\\\alpha_1\\\\alpha_2...\\\\alpha_m(\\\\emptyset)},\\\\quadx=b_{\\\\alpha_1}+\\\\sum\\\\limits_{k=2}^{\\\\infty}(b_{\\\\alpha_k}\\\\prod\\\\limits_{i=1}^{k-1}\\\\Theta_{\\\\alpha_i})\\\\equiv\\\\Delta^{\\\\Phi}_{\\\\alpha_1\\\\alpha_2...\\\\alpha_n...},$ \\nwhere $\\\\alpha_n\\\\in \\\\mathbb{Z}$, $\\\\Theta_n=\\\\Theta_{-n}=\\\\tau^{3+|n|}$,$b_n=\\\\sum\\\\limits_{i=-\\\\infty}^{n-1}\\\\Theta_i=\\\\begin{cases}\\\\tau^{2-n}, & \\\\mbox{if } n\\\\leq0, \\\\\\\\1-\\\\tau^{n+1}, & \\\\mbox{if } n\\\\geq 0.\\\\end{cases}$ \\nThe function $f$, which is the main object of the study, is defined by equalities$\\\\displaystyle\\\\begin{cases}f(x=\\\\Delta^{\\\\Phi}_{i_1...i_k...})=\\\\sigma_{i_11}+\\\\sum\\\\limits_{k=2}^{\\\\infty}\\\\sigma_{i_kk}\\\\prod\\\\limits_{j=1}^{k-1}p_{i_jj}\\\\equiv\\\\Delta_{i_1...i_k...},\\\\\\\\f(x=\\\\Delta^{\\\\Phi}_{i_1...i_m(\\\\emptyset)})=\\\\sigma_{i_11}+\\\\sum\\\\limits_{k=2}^{m}\\\\sigma_{i_kk}\\\\prod\\\\limits_{j=1}^{k-1}p_{i_jj}\\\\equiv\\\\Delta_{i_1...i_m(\\\\emptyset)},\\\\end{cases}$ where an infinite matrix $||p_{ik}||$ ($i\\\\in \\\\mathbb{Z}$, $k\\\\in \\\\mathbb N$) satisfies the conditions \\n1) $|p_{ik}|<1$ $\\\\forall i\\\\in \\\\mathbb{Z}$, $\\\\forall k\\\\in \\\\mathbb N;\\\\quad$2) $\\\\sum\\\\limits_{i\\\\in \\\\mathbb{Z}}p_{ik}=1$ $\\\\forall k\\\\in\\\\mathbb N$; \\n3) $0<\\\\sum\\\\limits_{k=2}^{\\\\infty}\\\\prod\\\\limits_{j=1}^{k-1}p_{i_jj}<\\\\infty~~\\\\forall (i_j)\\\\in L;\\\\quad$4) $0<\\\\sigma_{ik}\\\\equiv\\\\sum\\\\limits_{j=-\\\\infty}^{i-1}p_{jk}<1$ $\\\\forall i\\\\in \\\\mathbb Z, \\\\forall k\\\\in \\\\mathbb N.$ \\nThis class of functions contains monotonic, non-monotonic, nowhere monotonic functions and functionswithout monotonicity intervals except for constancy intervals, Cantor-type andquasi-Cantor-type functions as well as functions of bounded and unbounded variation. The criteria for the function $f$ to be monotonic and to be a function of the Cantor type as well as the criterion of nowhere monotonicity are proved. Expressions for the Lebesgue measure of the set of non-constancy of the function and for the variation of the function are found. Necessary and sufficient conditions for thefunction to be of unbounded variation are established.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.59.2.123-131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.2.123-131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们引入并研究了一类在区间$(0;1)$上定义的连续函数,使用字母表$\mathbb{Z}=\{0,\pm1,\pm2,…\}$和基$\tau=\frac{\sqrt的自变量的特殊编码(表示){5}-1}{2} $:$\displaystyle x=b_{k-1}\Theta_{\alpha_i})\equiv\Delta^{\Phi}_{\alpha_1\alpha_2…\alpha_n…},$其中$\alpha_n\in\mathbb{Z}$,$\Theta_n=\Theta_{-n}=\tau^{3+|n|}$,$b_n=\sum\limits_{i=-\infty}^{n-1}\Theta_i=\begin{cases}\tau^{2-n},&&mbox{if}n\leq0,\\1-\tau ^{n+1},\\mbox{if}n\geq 0.\end{casses}$函数$f$是研究的主要对象,由等式$\displaystyle\boot定义{cases}f(x=\Δ^{\Phi}_{i_1…i_k…}^{k-1}p_{i_jj}\equiv\Delta_{i_1…i_k…},\\f(x=\Delta^{\Phi}_{i1…i_m(\pemptyset)}^{k-1}p_{i_jj}\equiv\Delta_{i_1…i_m(\emptyset)},\end{cases}$其中一个无限矩阵$|p_{ik}|$($i\in\mathbb{Z}$,$k\in\math bb N$)满足条件1)$|p_{ik}|<1$\ for all i\in\athbb{Z}$,$\ for ll k\in\ath bb N;\quad$2)$\sum\limits_{i\in\mathbb{Z}}p_{ik}=1$$\对于所有k\in\math bb N$;3) $0^{k-1}p_{i_jj}<\infty~~\forall(i_j)\在L中;\quad$4)$0^{i-1}p_{jk}<1$$\for all i\in\mathbb Z,\for all k\in\math bb N$这类函数包含单调、非单调、无单调函数和除恒定区间、Cantor型和准Cantor型函数以及有界和无界变差函数外没有单调区间的函数。证明了函数$f$是单调的、是Cantor型函数的判据以及无单调性的判据。得到了函数的非恒定集的Lebesgue测度和函数的变分的表达式。建立了函数具有无界变分的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One class of continuous locally complicated functions related to infinite-symbol $\Phi$-representation of numbers
In the paper, we introduce and study a massive class of continuous functions defined on the interval $(0;1)$ using a special encoding (representation) of the argument with an alphabet $ \mathbb{Z}=\{0,\pm 1, \pm 2,...\}$ and base $\tau=\frac{\sqrt{5}-1}{2}$: $\displaystyle x=b_{\alpha_1}+\sum\limits_{k=2}^{m}(b_{\alpha_k}\prod\limits_{i=1}^{k-1}\Theta_{\alpha_i})\equiv\Delta^{\Phi}_{\alpha_1\alpha_2...\alpha_m(\emptyset)},\quadx=b_{\alpha_1}+\sum\limits_{k=2}^{\infty}(b_{\alpha_k}\prod\limits_{i=1}^{k-1}\Theta_{\alpha_i})\equiv\Delta^{\Phi}_{\alpha_1\alpha_2...\alpha_n...},$ where $\alpha_n\in \mathbb{Z}$, $\Theta_n=\Theta_{-n}=\tau^{3+|n|}$,$b_n=\sum\limits_{i=-\infty}^{n-1}\Theta_i=\begin{cases}\tau^{2-n}, & \mbox{if } n\leq0, \\1-\tau^{n+1}, & \mbox{if } n\geq 0.\end{cases}$ The function $f$, which is the main object of the study, is defined by equalities$\displaystyle\begin{cases}f(x=\Delta^{\Phi}_{i_1...i_k...})=\sigma_{i_11}+\sum\limits_{k=2}^{\infty}\sigma_{i_kk}\prod\limits_{j=1}^{k-1}p_{i_jj}\equiv\Delta_{i_1...i_k...},\\f(x=\Delta^{\Phi}_{i_1...i_m(\emptyset)})=\sigma_{i_11}+\sum\limits_{k=2}^{m}\sigma_{i_kk}\prod\limits_{j=1}^{k-1}p_{i_jj}\equiv\Delta_{i_1...i_m(\emptyset)},\end{cases}$ where an infinite matrix $||p_{ik}||$ ($i\in \mathbb{Z}$, $k\in \mathbb N$) satisfies the conditions 1) $|p_{ik}|<1$ $\forall i\in \mathbb{Z}$, $\forall k\in \mathbb N;\quad$2) $\sum\limits_{i\in \mathbb{Z}}p_{ik}=1$ $\forall k\in\mathbb N$; 3) $0<\sum\limits_{k=2}^{\infty}\prod\limits_{j=1}^{k-1}p_{i_jj}<\infty~~\forall (i_j)\in L;\quad$4) $0<\sigma_{ik}\equiv\sum\limits_{j=-\infty}^{i-1}p_{jk}<1$ $\forall i\in \mathbb Z, \forall k\in \mathbb N.$ This class of functions contains monotonic, non-monotonic, nowhere monotonic functions and functionswithout monotonicity intervals except for constancy intervals, Cantor-type andquasi-Cantor-type functions as well as functions of bounded and unbounded variation. The criteria for the function $f$ to be monotonic and to be a function of the Cantor type as well as the criterion of nowhere monotonicity are proved. Expressions for the Lebesgue measure of the set of non-constancy of the function and for the variation of the function are found. Necessary and sufficient conditions for thefunction to be of unbounded variation are established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信