微正则有限图系综的熵

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
T. Kawamoto
{"title":"微正则有限图系综的熵","authors":"T. Kawamoto","doi":"10.1088/2632-072X/acf01c","DOIUrl":null,"url":null,"abstract":"The entropy of random graph ensembles has gained widespread attention in the field of graph theory and network science. We consider microcanonical ensembles of simple graphs with prescribed degree sequences. We demonstrate that the mean-field approximations of the generating function using the Chebyshev–Hermite polynomials provide estimates for the entropy of finite-graph ensembles. Our estimate reproduces the Bender–Canfield formula in the limit of large graphs.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"4 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy of microcanonical finite-graph ensembles\",\"authors\":\"T. Kawamoto\",\"doi\":\"10.1088/2632-072X/acf01c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The entropy of random graph ensembles has gained widespread attention in the field of graph theory and network science. We consider microcanonical ensembles of simple graphs with prescribed degree sequences. We demonstrate that the mean-field approximations of the generating function using the Chebyshev–Hermite polynomials provide estimates for the entropy of finite-graph ensembles. Our estimate reproduces the Bender–Canfield formula in the limit of large graphs.\",\"PeriodicalId\":53211,\"journal\":{\"name\":\"Journal of Physics Complexity\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072X/acf01c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072X/acf01c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随机图集合的熵在图论和网络科学领域得到了广泛的关注。我们考虑具有规定次数序列的简单图的微正则集合。我们证明了使用Chebyshev–Hermite多项式的生成函数的平均场近似提供了有限图集合熵的估计。我们的估计再现了大图极限下的Bender–Canfield公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy of microcanonical finite-graph ensembles
The entropy of random graph ensembles has gained widespread attention in the field of graph theory and network science. We consider microcanonical ensembles of simple graphs with prescribed degree sequences. We demonstrate that the mean-field approximations of the generating function using the Chebyshev–Hermite polynomials provide estimates for the entropy of finite-graph ensembles. Our estimate reproduces the Bender–Canfield formula in the limit of large graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信