算法xxx:SC-SR1:MATLAB有限内存软件SR1信赖域方法

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
J. Brust, O. Burdakov, Jennifer B. Erway, Roummel F. Marcia
{"title":"算法xxx:SC-SR1:MATLAB有限内存软件SR1信赖域方法","authors":"J. Brust, O. Burdakov, Jennifer B. Erway, Roummel F. Marcia","doi":"10.1145/3550269","DOIUrl":null,"url":null,"abstract":"We present a MATLAB implementation of the symmetric rank-one (SC-SR1) method that solves trust-region subproblems when a limited-memory symmetric rank-one (L-SR1) matrix is used in place of the true Hessian matrix, which can be used for large-scale optimization. The method takes advantage of two shape-changing norms [7, 9] to decompose the trust-region subproblem into two separate problems. Using one of the proposed norms, the resulting subproblems have closed-form solutions. Meanwhile, using the other proposed norm, one of the resulting subproblems has a closed-form solution while the other is easily solvable using techniques that exploit the structure of L-SR1 matrices. Numerical results suggest that the SC-SR1 method is able to solve trust-region subproblems to high accuracy even in the so-called “hard case”. When integrated into a trust-region algorithm, extensive numerical experiments suggest that the proposed algorithms perform well, when compared with widely used solvers, such as truncated CG.","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Algorithm xxx: SC-SR1: MATLAB Software for Limited-Memory SR1 Trust-Region Methods\",\"authors\":\"J. Brust, O. Burdakov, Jennifer B. Erway, Roummel F. Marcia\",\"doi\":\"10.1145/3550269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a MATLAB implementation of the symmetric rank-one (SC-SR1) method that solves trust-region subproblems when a limited-memory symmetric rank-one (L-SR1) matrix is used in place of the true Hessian matrix, which can be used for large-scale optimization. The method takes advantage of two shape-changing norms [7, 9] to decompose the trust-region subproblem into two separate problems. Using one of the proposed norms, the resulting subproblems have closed-form solutions. Meanwhile, using the other proposed norm, one of the resulting subproblems has a closed-form solution while the other is easily solvable using techniques that exploit the structure of L-SR1 matrices. Numerical results suggest that the SC-SR1 method is able to solve trust-region subproblems to high accuracy even in the so-called “hard case”. When integrated into a trust-region algorithm, extensive numerical experiments suggest that the proposed algorithms perform well, when compared with widely used solvers, such as truncated CG.\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3550269\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3550269","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了对称秩一(SC-SR1)方法的MATLAB实现,当使用有限记忆对称秩一矩阵(L-SR1)代替可用于大规模优化的真Hessian矩阵时,该方法解决了信任域子问题。该方法利用两个形状变化范数[7,9]将信任域子问题分解为两个独立的问题。使用所提出的规范之一,得到的子问题具有闭合形式的解。同时,使用另一个提出的范数,其中一个子问题具有闭合形式的解,而另一个子问题使用利用L-SR1矩阵结构的技术很容易求解。数值结果表明,即使在所谓的“困难情况”下,SC-SR1方法也能够高精度地求解信赖域子问题。当集成到信任域算法中时,大量的数值实验表明,与广泛使用的求解器(如截断CG)相比,所提出的算法表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm xxx: SC-SR1: MATLAB Software for Limited-Memory SR1 Trust-Region Methods
We present a MATLAB implementation of the symmetric rank-one (SC-SR1) method that solves trust-region subproblems when a limited-memory symmetric rank-one (L-SR1) matrix is used in place of the true Hessian matrix, which can be used for large-scale optimization. The method takes advantage of two shape-changing norms [7, 9] to decompose the trust-region subproblem into two separate problems. Using one of the proposed norms, the resulting subproblems have closed-form solutions. Meanwhile, using the other proposed norm, one of the resulting subproblems has a closed-form solution while the other is easily solvable using techniques that exploit the structure of L-SR1 matrices. Numerical results suggest that the SC-SR1 method is able to solve trust-region subproblems to high accuracy even in the so-called “hard case”. When integrated into a trust-region algorithm, extensive numerical experiments suggest that the proposed algorithms perform well, when compared with widely used solvers, such as truncated CG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信