高烈度炸药爆燃爆轰模拟专用水动力模拟程序的验证

IF 0.5 Q4 ENGINEERING, MECHANICAL
Stephen A. Andrews, T. Aslam
{"title":"高烈度炸药爆燃爆轰模拟专用水动力模拟程序的验证","authors":"Stephen A. Andrews, T. Aslam","doi":"10.1115/1.4053340","DOIUrl":null,"url":null,"abstract":"\n A specialized hydrodynamic simulation code has been developed to simulate one-dimensional unsteady problems involving the detonation and deflagration of high explosives. To model all the relevant physical processes in these problems, a code is required to simulate compressible hydrodynamics, unsteady thermal conduction and chemical reactions with complex rate laws. Several verification exercises are presented which test the implementation of these capabilities. The code also requires models for physics processes such as equations of state and conductivity for pure materials and mixtures as well as rate laws for chemical reactions. Additional verification tests are required to ensure these models are implemented correctly. Though this code is limited in the types of problems it can simulate, its computationally efficient formulation allow it to be used in calibration studies for reactive burn models for high explosives.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Verification of a Specialized Hydrodynamic Simulation Code for Modeling Deflagration and Detonation of High Explosives\",\"authors\":\"Stephen A. Andrews, T. Aslam\",\"doi\":\"10.1115/1.4053340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A specialized hydrodynamic simulation code has been developed to simulate one-dimensional unsteady problems involving the detonation and deflagration of high explosives. To model all the relevant physical processes in these problems, a code is required to simulate compressible hydrodynamics, unsteady thermal conduction and chemical reactions with complex rate laws. Several verification exercises are presented which test the implementation of these capabilities. The code also requires models for physics processes such as equations of state and conductivity for pure materials and mixtures as well as rate laws for chemical reactions. Additional verification tests are required to ensure these models are implemented correctly. Though this code is limited in the types of problems it can simulate, its computationally efficient formulation allow it to be used in calibration studies for reactive burn models for high explosives.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4053340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4

摘要

一个专门的水动力模拟程序已经开发出来,用于模拟涉及高烈性炸药爆轰和爆燃的一维非定常问题。为了模拟这些问题中所有相关的物理过程,需要一个程序来模拟具有复杂速率定律的可压缩流体力学、非定常热传导和化学反应。提出了几个验证练习,以测试这些能力的执行情况。该规范还需要物理过程的模型,如纯材料和混合物的状态方程和电导率方程,以及化学反应的速率定律。需要额外的验证测试来确保这些模型被正确地实现。虽然这个程序在模拟的问题类型上受到限制,但其计算效率高的公式允许它用于高能炸药反应性燃烧模型的校准研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification of a Specialized Hydrodynamic Simulation Code for Modeling Deflagration and Detonation of High Explosives
A specialized hydrodynamic simulation code has been developed to simulate one-dimensional unsteady problems involving the detonation and deflagration of high explosives. To model all the relevant physical processes in these problems, a code is required to simulate compressible hydrodynamics, unsteady thermal conduction and chemical reactions with complex rate laws. Several verification exercises are presented which test the implementation of these capabilities. The code also requires models for physics processes such as equations of state and conductivity for pure materials and mixtures as well as rate laws for chemical reactions. Additional verification tests are required to ensure these models are implemented correctly. Though this code is limited in the types of problems it can simulate, its computationally efficient formulation allow it to be used in calibration studies for reactive burn models for high explosives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信