i.i.d随机变量部分和最大值序列的强大数定律

Pub Date : 2019-06-10 DOI:10.19195/0208-4147.39.1.2
Shuhua Chang, Deli Li, A. Rosalsky
{"title":"i.i.d随机变量部分和最大值序列的强大数定律","authors":"Shuhua Chang, Deli Li, A. Rosalsky","doi":"10.19195/0208-4147.39.1.2","DOIUrl":null,"url":null,"abstract":"Let 0 < p ≤ 2, let {Xn; n ≥ 1} be a sequence of independent copies of a real-valued random variable X, and set Sn = X1 + . . . + Xn, n ≥ ­ 1. Motivated by a theorem of Mikosch 1984, this note is devoted to establishing a strong law of large numbers for the sequence {max1≤k≤n |Sk| ; n ≥ ­ 1}. More specifically, necessary and sufficient conditions are given forlimn→∞ max1≤k≤n |Sk|log n−1 = e1/p a.s.,where log x = loge max{e, x}, x ≥­ 0.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong laws of large numbers for the sequence of the maximum of partial sums of i.i.d. random variables\",\"authors\":\"Shuhua Chang, Deli Li, A. Rosalsky\",\"doi\":\"10.19195/0208-4147.39.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let 0 < p ≤ 2, let {Xn; n ≥ 1} be a sequence of independent copies of a real-valued random variable X, and set Sn = X1 + . . . + Xn, n ≥ ­ 1. Motivated by a theorem of Mikosch 1984, this note is devoted to establishing a strong law of large numbers for the sequence {max1≤k≤n |Sk| ; n ≥ ­ 1}. More specifically, necessary and sufficient conditions are given forlimn→∞ max1≤k≤n |Sk|log n−1 = e1/p a.s.,where log x = loge max{e, x}, x ≥­ 0.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19195/0208-4147.39.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19195/0208-4147.39.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设0 < p≤2,设{Xn;n≥1}为实值随机变量X的独立副本序列,设Sn = X1 +…+ Xn, n≥- 1。本文从Mikosch 1984的一个定理出发,建立了数列{max1≤k≤n |Sk|;N≥- 1}。更具体地说,给出了limn→∞max1≤k≤n |Sk|log n−1 = e1/p a.s,其中log x = loge max{e, x}, x≥- 0的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Strong laws of large numbers for the sequence of the maximum of partial sums of i.i.d. random variables
Let 0 < p ≤ 2, let {Xn; n ≥ 1} be a sequence of independent copies of a real-valued random variable X, and set Sn = X1 + . . . + Xn, n ≥ ­ 1. Motivated by a theorem of Mikosch 1984, this note is devoted to establishing a strong law of large numbers for the sequence {max1≤k≤n |Sk| ; n ≥ ­ 1}. More specifically, necessary and sufficient conditions are given forlimn→∞ max1≤k≤n |Sk|log n−1 = e1/p a.s.,where log x = loge max{e, x}, x ≥­ 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信