J. Dockter, Pietro Paparella, R. L. Perry, Jonathan D Ta
{"title":"佩龙相似度的克罗内克积","authors":"J. Dockter, Pietro Paparella, R. L. Perry, Jonathan D Ta","doi":"10.13001/ela.2022.6697","DOIUrl":null,"url":null,"abstract":"An invertible matrix is called a Perron similarity if one of its columns and the corresponding row of its inverse are both nonnegative or both nonpositive. Such matrices are of relevance and import in the study of the nonnegative inverse eigenvalue problem. In this work, Kronecker products of Perron similarities are examined and used to construct ideal Perron similarities all of whose rows are extremal.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kronecker products of Perron similarities\",\"authors\":\"J. Dockter, Pietro Paparella, R. L. Perry, Jonathan D Ta\",\"doi\":\"10.13001/ela.2022.6697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An invertible matrix is called a Perron similarity if one of its columns and the corresponding row of its inverse are both nonnegative or both nonpositive. Such matrices are of relevance and import in the study of the nonnegative inverse eigenvalue problem. In this work, Kronecker products of Perron similarities are examined and used to construct ideal Perron similarities all of whose rows are extremal.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.6697\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6697","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
An invertible matrix is called a Perron similarity if one of its columns and the corresponding row of its inverse are both nonnegative or both nonpositive. Such matrices are of relevance and import in the study of the nonnegative inverse eigenvalue problem. In this work, Kronecker products of Perron similarities are examined and used to construct ideal Perron similarities all of whose rows are extremal.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.