奇异点的局部k- h代数的导数

IF 0.7 4区 数学 Q2 MATHEMATICS
Naveed Hussain, S. Yau, Huaiqing Zuo
{"title":"奇异点的局部k- h代数的导数","authors":"Naveed Hussain, S. Yau, Huaiqing Zuo","doi":"10.1216/rmj.2023.53.65","DOIUrl":null,"url":null,"abstract":"In our previous work, we introduced a series of new derivation Lie algebras Lk(V ) associated to an isolated hypersurface singularity (V, 0). These are new analytic invariants of singularities. In this article, on the one hand, we investigate L2(V ) for fewnomial isolated singularities and obtain the formula of λk(V ) (i.e., the dimension of Lk(V )) for trinomial singularities. Furthermore, we prove the sharp upper estimate conjecture for the L2(V ). This part is a continuous work of our previous work in [HYZ8]. On the other hand, we proposed two new conjectures for the τk(V ) and λk(V ) and we prove these conjectures for a large class of singularities.","PeriodicalId":49591,"journal":{"name":"Rocky Mountain Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DERIVATIONS OF LOCAL k-TH HESSIAN ALGEBRAS OF SINGULARITIES\",\"authors\":\"Naveed Hussain, S. Yau, Huaiqing Zuo\",\"doi\":\"10.1216/rmj.2023.53.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our previous work, we introduced a series of new derivation Lie algebras Lk(V ) associated to an isolated hypersurface singularity (V, 0). These are new analytic invariants of singularities. In this article, on the one hand, we investigate L2(V ) for fewnomial isolated singularities and obtain the formula of λk(V ) (i.e., the dimension of Lk(V )) for trinomial singularities. Furthermore, we prove the sharp upper estimate conjecture for the L2(V ). This part is a continuous work of our previous work in [HYZ8]. On the other hand, we proposed two new conjectures for the τk(V ) and λk(V ) and we prove these conjectures for a large class of singularities.\",\"PeriodicalId\":49591,\"journal\":{\"name\":\"Rocky Mountain Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rocky Mountain Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/rmj.2023.53.65\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/rmj.2023.53.65","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在我们之前的工作中,我们引入了一系列与孤立超曲面奇点(V, 0)相关的新的派生李代数Lk(V)。这些是奇点的新的解析不变量。在这篇文章中,我们一方面研究了L2(V)对于几个多项式孤立奇点,得到了λk(V)的公式(即Lk(V)的维数)对于三项式奇点。进一步证明了L2(V)的锐上估计猜想。这一部分是我们之前在[HYZ8]工作的延续。另一方面,我们提出了τk(V)和λk(V)的两个新猜想,并证明了这两个猜想适用于一大类奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DERIVATIONS OF LOCAL k-TH HESSIAN ALGEBRAS OF SINGULARITIES
In our previous work, we introduced a series of new derivation Lie algebras Lk(V ) associated to an isolated hypersurface singularity (V, 0). These are new analytic invariants of singularities. In this article, on the one hand, we investigate L2(V ) for fewnomial isolated singularities and obtain the formula of λk(V ) (i.e., the dimension of Lk(V )) for trinomial singularities. Furthermore, we prove the sharp upper estimate conjecture for the L2(V ). This part is a continuous work of our previous work in [HYZ8]. On the other hand, we proposed two new conjectures for the τk(V ) and λk(V ) and we prove these conjectures for a large class of singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
71
审稿时长
7.5 months
期刊介绍: Rocky Mountain Journal of Mathematics publishes both research and expository articles in mathematics, and particularly invites well-written survey articles. The Rocky Mountain Journal of Mathematics endeavors to publish significant research papers and substantial expository/survey papers in a broad range of theoretical and applied areas of mathematics. For this reason the editorial board is broadly based and submissions are accepted in most areas of mathematics. In addition, the journal publishes specialized conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信