pH和煅烧温度对氧化铁纳米粒子多晶型和性能的影响

Q4 Engineering
J. Justus, S. Roy, A. Moses Ezhil Raj, M. Bououdina
{"title":"pH和煅烧温度对氧化铁纳米粒子多晶型和性能的影响","authors":"J. Justus, S. Roy, A. Moses Ezhil Raj, M. Bououdina","doi":"10.1504/IJNP.2019.10019136","DOIUrl":null,"url":null,"abstract":"Iron oxide nanoparticles were successfully synthesised by a facile solution approach employing iron (III) chloride (FeCl3) as starting precursor and sodium hydroxide (NaOH) as reducing agent, followed by calcination in air at different temperatures viz. 400, 600 and 800°C for three hours. The range of calcination temperature has been chosen from thermogravimetry analysis. X-ray diffraction patterns clearly confirmed the structural transformation of cubic Fe3O4 to hexagonal α-Fe2O3 upon calcination. FTIR vibrational bands corresponding to Fe-O bondings in the tetrahedral and octahedral sites and their shift upon calcination confirmed the structural transitions. Scanning electron microscopy observations revealed agglomers meanwhile energy dispersive spectroscopy analysis confirm the elemental composition. Optical band gaps estimated from Tauc plots was found to vary with structural transformation. Electrical conductivity measurements with temperature were explained on the basis of fluctuation of ions in the B sites of Fe3O4 and deviation from stoichiometry in the case of α-Fe2O3.","PeriodicalId":14016,"journal":{"name":"International Journal of Nanoparticles","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of pH and effect of calcination temperature on polymorphs and properties of iron oxide nanoparticles\",\"authors\":\"J. Justus, S. Roy, A. Moses Ezhil Raj, M. Bououdina\",\"doi\":\"10.1504/IJNP.2019.10019136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron oxide nanoparticles were successfully synthesised by a facile solution approach employing iron (III) chloride (FeCl3) as starting precursor and sodium hydroxide (NaOH) as reducing agent, followed by calcination in air at different temperatures viz. 400, 600 and 800°C for three hours. The range of calcination temperature has been chosen from thermogravimetry analysis. X-ray diffraction patterns clearly confirmed the structural transformation of cubic Fe3O4 to hexagonal α-Fe2O3 upon calcination. FTIR vibrational bands corresponding to Fe-O bondings in the tetrahedral and octahedral sites and their shift upon calcination confirmed the structural transitions. Scanning electron microscopy observations revealed agglomers meanwhile energy dispersive spectroscopy analysis confirm the elemental composition. Optical band gaps estimated from Tauc plots was found to vary with structural transformation. Electrical conductivity measurements with temperature were explained on the basis of fluctuation of ions in the B sites of Fe3O4 and deviation from stoichiometry in the case of α-Fe2O3.\",\"PeriodicalId\":14016,\"journal\":{\"name\":\"International Journal of Nanoparticles\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanoparticles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNP.2019.10019136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNP.2019.10019136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

以氯化铁(FeCl3)为起始前驱体,氢氧化钠(NaOH)为还原剂,在400、600和800℃的空气中煅烧3小时,采用易溶法成功合成了氧化铁纳米颗粒。煅烧温度范围由热重分析确定。x射线衍射图清楚地证实了煅烧过程中立方Fe3O4向六方α-Fe2O3的结构转变。四面体和八面体上Fe-O键对应的FTIR振动带及其在煅烧时的位移证实了结构转变。扫描电镜观察发现了团聚体,能谱分析证实了元素组成。根据Tauc图估计的光学带隙随结构转变而变化。基于Fe3O4的B位离子波动和α-Fe2O3的化学计量偏差,解释了温度下电导率的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of pH and effect of calcination temperature on polymorphs and properties of iron oxide nanoparticles
Iron oxide nanoparticles were successfully synthesised by a facile solution approach employing iron (III) chloride (FeCl3) as starting precursor and sodium hydroxide (NaOH) as reducing agent, followed by calcination in air at different temperatures viz. 400, 600 and 800°C for three hours. The range of calcination temperature has been chosen from thermogravimetry analysis. X-ray diffraction patterns clearly confirmed the structural transformation of cubic Fe3O4 to hexagonal α-Fe2O3 upon calcination. FTIR vibrational bands corresponding to Fe-O bondings in the tetrahedral and octahedral sites and their shift upon calcination confirmed the structural transitions. Scanning electron microscopy observations revealed agglomers meanwhile energy dispersive spectroscopy analysis confirm the elemental composition. Optical band gaps estimated from Tauc plots was found to vary with structural transformation. Electrical conductivity measurements with temperature were explained on the basis of fluctuation of ions in the B sites of Fe3O4 and deviation from stoichiometry in the case of α-Fe2O3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Nanoparticles
International Journal of Nanoparticles Engineering-Mechanical Engineering
CiteScore
1.60
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信