基于三重损失卷积网络的茶叶验证

Q3 Engineering
Kun-Yi Chen, Chi-Yu Chang, Zhi-Ren Tsai, Chun-Ting Lee, Zon-Yin Shae
{"title":"基于三重损失卷积网络的茶叶验证","authors":"Kun-Yi Chen, Chi-Yu Chang, Zhi-Ren Tsai, Chun-Ting Lee, Zon-Yin Shae","doi":"10.46604/aiti.2021.6939","DOIUrl":null,"url":null,"abstract":"To solve tea image classification problems, this study focuses on triplet loss convolutional neural network to classify six high-mountain oolong tea classes. In the experiment, instead of using traditional deep learning training approach for local feature of tea images, an innovative image verification approach is proposed to learn the global feature of tea images by integrating the distributed tea leaves’ features of all tea sub-images and using a majority voting mechanism to do classification. The results show that the proposed approach can work for small sample size dataset and have higher accuracy than normal transfer learning approach. The average accuracy of the proposed approach achieves 99.54%.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tea Verification Using Triplet Loss Convolutional Network\",\"authors\":\"Kun-Yi Chen, Chi-Yu Chang, Zhi-Ren Tsai, Chun-Ting Lee, Zon-Yin Shae\",\"doi\":\"10.46604/aiti.2021.6939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve tea image classification problems, this study focuses on triplet loss convolutional neural network to classify six high-mountain oolong tea classes. In the experiment, instead of using traditional deep learning training approach for local feature of tea images, an innovative image verification approach is proposed to learn the global feature of tea images by integrating the distributed tea leaves’ features of all tea sub-images and using a majority voting mechanism to do classification. The results show that the proposed approach can work for small sample size dataset and have higher accuracy than normal transfer learning approach. The average accuracy of the proposed approach achieves 99.54%.\",\"PeriodicalId\":52314,\"journal\":{\"name\":\"Advances in Technology Innovation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/aiti.2021.6939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2021.6939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

为了解决茶叶图像分类问题,本研究采用三重损失卷积神经网络对六个高山乌龙茶类别进行分类。在实验中,提出了一种创新的图像验证方法,通过整合所有茶叶子图像的分布式茶叶特征,并使用多数投票机制进行分类,来学习茶叶图像的全局特征,而不是使用传统的深度学习训练方法来学习茶图像的局部特征。结果表明,该方法可以适用于小样本量的数据集,并且比普通的迁移学习方法具有更高的精度。该方法的平均精度达到99.54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tea Verification Using Triplet Loss Convolutional Network
To solve tea image classification problems, this study focuses on triplet loss convolutional neural network to classify six high-mountain oolong tea classes. In the experiment, instead of using traditional deep learning training approach for local feature of tea images, an innovative image verification approach is proposed to learn the global feature of tea images by integrating the distributed tea leaves’ features of all tea sub-images and using a majority voting mechanism to do classification. The results show that the proposed approach can work for small sample size dataset and have higher accuracy than normal transfer learning approach. The average accuracy of the proposed approach achieves 99.54%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Technology Innovation
Advances in Technology Innovation Energy-Energy Engineering and Power Technology
CiteScore
1.90
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信