{"title":"使用先进的光纤传感器测量铝和CFRP粘合粘合中的变形","authors":"Hinrich Grefe, D. Weiser, M. Kandula, K. Dilger","doi":"10.1051/mfreview/2020011","DOIUrl":null,"url":null,"abstract":"Monitoring the deformation within an adhesive joint during the curing cycle provides valuable information regarding the build-up of thermal strain and stress. Distributed fibre optic sensors are very useful for spatial continuous measurements of deformation or temperature. Integrated into a hybrid joint, the thermal curing process of the adhesive can be monitored. This detailed insight into the joint helps to understand the deformation and thereby also the resulting stress. Analysing the deformation process establishes the foundation to adapt techniques to reduce the thermally induced deformation and thereby the resulting stress.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/mfreview/2020011","citationCount":"3","resultStr":"{\"title\":\"Deformation measurement within adhesive bonds of aluminium and CFRP using advanced fibre optic sensors\",\"authors\":\"Hinrich Grefe, D. Weiser, M. Kandula, K. Dilger\",\"doi\":\"10.1051/mfreview/2020011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring the deformation within an adhesive joint during the curing cycle provides valuable information regarding the build-up of thermal strain and stress. Distributed fibre optic sensors are very useful for spatial continuous measurements of deformation or temperature. Integrated into a hybrid joint, the thermal curing process of the adhesive can be monitored. This detailed insight into the joint helps to understand the deformation and thereby also the resulting stress. Analysing the deformation process establishes the foundation to adapt techniques to reduce the thermally induced deformation and thereby the resulting stress.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/mfreview/2020011\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2020011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Deformation measurement within adhesive bonds of aluminium and CFRP using advanced fibre optic sensors
Monitoring the deformation within an adhesive joint during the curing cycle provides valuable information regarding the build-up of thermal strain and stress. Distributed fibre optic sensors are very useful for spatial continuous measurements of deformation or temperature. Integrated into a hybrid joint, the thermal curing process of the adhesive can be monitored. This detailed insight into the joint helps to understand the deformation and thereby also the resulting stress. Analysing the deformation process establishes the foundation to adapt techniques to reduce the thermally induced deformation and thereby the resulting stress.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.