Xiuyang Wang, Jun Shu, Tong Ni, Chengxu Xu, Bin Xu, Xiaoqiang Liu, Kaiming Zhang, Weidong Jiang
{"title":"新型双核铜(II)配合物与双三齿咪唑衍生物诱导的RNA酯交换模型","authors":"Xiuyang Wang, Jun Shu, Tong Ni, Chengxu Xu, Bin Xu, Xiaoqiang Liu, Kaiming Zhang, Weidong Jiang","doi":"10.1007/s00775-023-02000-6","DOIUrl":null,"url":null,"abstract":"<div><p>Two novel bis-tridentate imidazole derivatives were conveniently synthesized using a ‘one-pot’ method. Their dinuclear (Cu<sub>2</sub>L<sup>1</sup>Cl<sub>4</sub>, Cu<sub>2</sub>L<sup>2</sup>Cl<sub>4</sub>) and mononuclear (CuL<sup>1</sup>Cl<sub>2</sub>, CuL<sup>2</sup>Cl<sub>2</sub>?H<sub>2</sub>O) copper (II) complexes were synthesized to comparably evaluate their reactivities in the hydrolytic cleavage of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) as a classic RNA model. Single crystals of Cu<sub>2</sub>L<sup>1</sup>Cl<sub>4</sub> and Cu<sub>2</sub>L<sup>2</sup>Cl<sub>4</sub> indicate that both of them are centrosymmetric, and each central copper ion is penta-coordinated. Regarding the transesterification of HPNP, both of dinuclear ones exhibited excess one order of magnitude rate enhancement in contrast with auto-hydrolysis reaction. Under comparable conditions, dinuclear complexes displayed no more than twofold increase in activity over their mononuclear analogues, which verifies the lack of binuclear cooperation effect due to long Cu-to-Cu space.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"28 5","pages":"473 - 483"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transesterification of RNA model induced by novel dinuclear copper (II) complexes with bis-tridentate imidazole derivatives\",\"authors\":\"Xiuyang Wang, Jun Shu, Tong Ni, Chengxu Xu, Bin Xu, Xiaoqiang Liu, Kaiming Zhang, Weidong Jiang\",\"doi\":\"10.1007/s00775-023-02000-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two novel bis-tridentate imidazole derivatives were conveniently synthesized using a ‘one-pot’ method. Their dinuclear (Cu<sub>2</sub>L<sup>1</sup>Cl<sub>4</sub>, Cu<sub>2</sub>L<sup>2</sup>Cl<sub>4</sub>) and mononuclear (CuL<sup>1</sup>Cl<sub>2</sub>, CuL<sup>2</sup>Cl<sub>2</sub>?H<sub>2</sub>O) copper (II) complexes were synthesized to comparably evaluate their reactivities in the hydrolytic cleavage of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) as a classic RNA model. Single crystals of Cu<sub>2</sub>L<sup>1</sup>Cl<sub>4</sub> and Cu<sub>2</sub>L<sup>2</sup>Cl<sub>4</sub> indicate that both of them are centrosymmetric, and each central copper ion is penta-coordinated. Regarding the transesterification of HPNP, both of dinuclear ones exhibited excess one order of magnitude rate enhancement in contrast with auto-hydrolysis reaction. Under comparable conditions, dinuclear complexes displayed no more than twofold increase in activity over their mononuclear analogues, which verifies the lack of binuclear cooperation effect due to long Cu-to-Cu space.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":603,\"journal\":{\"name\":\"JBIC Journal of Biological Inorganic Chemistry\",\"volume\":\"28 5\",\"pages\":\"473 - 483\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JBIC Journal of Biological Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00775-023-02000-6\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JBIC Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s00775-023-02000-6","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transesterification of RNA model induced by novel dinuclear copper (II) complexes with bis-tridentate imidazole derivatives
Two novel bis-tridentate imidazole derivatives were conveniently synthesized using a ‘one-pot’ method. Their dinuclear (Cu2L1Cl4, Cu2L2Cl4) and mononuclear (CuL1Cl2, CuL2Cl2?H2O) copper (II) complexes were synthesized to comparably evaluate their reactivities in the hydrolytic cleavage of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) as a classic RNA model. Single crystals of Cu2L1Cl4 and Cu2L2Cl4 indicate that both of them are centrosymmetric, and each central copper ion is penta-coordinated. Regarding the transesterification of HPNP, both of dinuclear ones exhibited excess one order of magnitude rate enhancement in contrast with auto-hydrolysis reaction. Under comparable conditions, dinuclear complexes displayed no more than twofold increase in activity over their mononuclear analogues, which verifies the lack of binuclear cooperation effect due to long Cu-to-Cu space.
期刊介绍:
Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.