Zihao Qi, Yongjun Xu, James J. Zhang, Xiangui Zhao
{"title":"非对称轻歌剧的成长","authors":"Zihao Qi, Yongjun Xu, James J. Zhang, Xiangui Zhao","doi":"10.1512/iumj.2023.72.9243","DOIUrl":null,"url":null,"abstract":"The paper concerns the Gelfand-Kirillov dimension and the generating series of nonsymmetric operads. An analogue of Bergman's gap theorem is proved, namely, no finitely generated locally finite nonsymmetric operad has Gelfand-Kirillov dimension strictly between $1$ and $2$. For every $r\\in \\{0\\}\\cup \\{1\\}\\cup [2,\\infty)$ or $r=\\infty$, we construct a single-element generated nonsymmetric operad with Gelfand-Kirillov dimension $r$. We also provide counterexamples to two expectations of Khoroshkin and Piontkovski about the generating series of operads.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Growth of nonsymmetric operads\",\"authors\":\"Zihao Qi, Yongjun Xu, James J. Zhang, Xiangui Zhao\",\"doi\":\"10.1512/iumj.2023.72.9243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper concerns the Gelfand-Kirillov dimension and the generating series of nonsymmetric operads. An analogue of Bergman's gap theorem is proved, namely, no finitely generated locally finite nonsymmetric operad has Gelfand-Kirillov dimension strictly between $1$ and $2$. For every $r\\\\in \\\\{0\\\\}\\\\cup \\\\{1\\\\}\\\\cup [2,\\\\infty)$ or $r=\\\\infty$, we construct a single-element generated nonsymmetric operad with Gelfand-Kirillov dimension $r$. We also provide counterexamples to two expectations of Khoroshkin and Piontkovski about the generating series of operads.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9243\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9243","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The paper concerns the Gelfand-Kirillov dimension and the generating series of nonsymmetric operads. An analogue of Bergman's gap theorem is proved, namely, no finitely generated locally finite nonsymmetric operad has Gelfand-Kirillov dimension strictly between $1$ and $2$. For every $r\in \{0\}\cup \{1\}\cup [2,\infty)$ or $r=\infty$, we construct a single-element generated nonsymmetric operad with Gelfand-Kirillov dimension $r$. We also provide counterexamples to two expectations of Khoroshkin and Piontkovski about the generating series of operads.